八年级下册期末考试数学试卷(含答案)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

八年级下册期末考试数学试卷班级姓名考场考号一、选择题(本大题共6小题,每小题3分,共18分)1.如果代数式有意义,那么实数x的取值范围是()A.x≥0B.x≠4C.x≥4D.x>42.在一次英语单词听写比赛中共听写了16个单词,每听写正确1个得1分,最后全体参赛同学的听写成绩统计如右表:则听写成绩的众数和中位数分别是()A.15,14B.15,15C.16,15D.16,143.已知一次函数y=kx+b,若k<0,b<0,则函数y=kx+b的图象大致是()A.B.C.D.4.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了()A.2cmB.3cmC.4cmD.5cm第4题图第5题图第6题图第8题图5.如图,在Rt△ABC中,∠B=90°,BC=3,AB=4,点D,E分别是AB,AC的中点,CF平分Rt△ABC的一个外角∠ACM,交DE的延长线于点F,则DF的长为()A.4B.5C.5.5D.66.2017年怀柔区中考体育加试女子800米耐力测试中,同时起跑的李丽和吴梅所跑的路程S(米)与所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD.下列说法正确的是()A.李丽的速度随时间的增大而增大B.吴梅的平均速度比李丽的平均速度大C.在起跑后180秒时,两人相遇D.在起跑后50秒时,吴梅在李丽的前面二、填空题(本题共6小题,每小题3分,共18分)7.计算:=.8.小明同学用手机软件记录了5月份每天健步走的步数(万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,中位数是万成绩(分)1213141516人数(个)13457步.9.如图是马口生态公园的一角,有人为了抄近道而避开横平竖直的路的拐角∠ABC,而走“捷径AC”,于是在草坪内走出了一条不该有的“路AC”.已知AB=40米,BC=30米,他们踩坏草坪,只为少走米的路.第9题图第10题图第11题图第12题图10.已知:如图,平行四边形ABCD中,BE平分∠ABC交AD于E,CF平分∠BCD交AD于F,若AB=4,BC=6,则EF=.11.某市规定了每月用水不超过l8立方米和超过18立方米两种不同的收费标准,该市用户每月应交水费y(元)是用水x(立方米)的函数,其图象如图所示.已知小丽家3月份交了水费102元,则小丽家这个月用水量为立方米.12.如图,小明用三个等腰三角形(图中①②③)拼成了一个平行四边形ABCD,且∠D>90°>∠C,则∠C=度.三、解答题(本大题共5小题,每小题6分,共30分)13.计算14.已知:y﹣3与x成正比例,且当x=﹣2时,y的值为7.求y与x之间的函数关系式.15.某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分(不计其他因素条件),请你说明谁将被录用.16.如图,在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.(1)求CD,AD的值;(2)判断△ABC的形状,并说明理由.17.如图所示是8×8的正方形网格,A、B两点均在格点(即小正方形的顶点)上;现请你在图(1)、图(2)、图(3)中,分别画出一个以A、B、C、D为项点的菱形(可能包含正方形),要求:(1)顶点C、D也在格点上;(2)只能使用笔试面试体能甲858075乙809073丙837990无刻度的直尺作工具;(3)所画的三个菱形互不全等.四、解答题(本大题共3小题,每小题8分,共24分)18.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连结CD和EF.(1)求证:四边形CDEF是平行四边形;(2)求四边形BDEF的周长.19.我市某中学举办“网络安全知识答题竞赛”,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示.平均分(分)中位数(分)众数(分)方差(分2)初中部a85bs初中2高中部85c100160(1)根据图示计算出a、b、c的值;(2)结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?(3)计算初中代表队决赛成绩的方差s初中2,并判断哪一个代表队选手成绩较为稳定.20.小明前往体育中心观看演唱会,进场时,发现演唱会门票还在家里,此时离演唱会开始还有25分钟,于是立即步行回家取票.同时,他父亲从家里出发骑自行车以他3倍的速度给他送票,两人在途中相遇,相遇后小明立即坐父亲的自行车赶回体育中心,图中线段AB、OB分别表示父、子俩送票、取票过程中,离体育中心的路程S(米)与所用时间t(分钟)之间的函数关系,结合图象解答下列问题(假设骑自行车和步行的速度始终保持不变).(1)求点B的坐标和AB所在直线的函数关系式;(2)小明能否在演唱会开始前到达体育中心?五、解答题(本大题共2小题,每小题9分,共18分)21.如图,在▱ABCD中,各内角的平分线分别相交于点E,F,G,H.(1)求证:△ABG≌△CDE;(2)猜一猜:四边形EFGH是什么样的特殊四边形?证明你的猜想;(3)若AB=6,BC=4,∠DAB=60°,求四边形EFGH的面积.22.如图,在平面直角坐标系xOy中,一次函y=kx+b的图象经过点A(﹣2,4),且与正比例函数y=﹣x的图象交于点B(a,2).(1)求a的值及一次函数y=kx+b的解析式;(2)若一次函数y=kx+b的图象与x轴交于点C,且正比例函数y=﹣x的图象向下平移m(m>0)个单位长度后经过点C,求m的值;(3)直接写出关于x的不等式0<﹣x<kx+b的解集.六、解答题(本大题共12分)23.操作探究:数学研究课上,老师带领大家探究《折纸中的数学问题》时,出示如图1所示的长方形纸条ABCD,其中AD=BC=1,AB=CD=5.然后在纸条上任意画一条截线段MN,将纸片沿MN折叠,MB与DN交于点K,得到△MNK.如图2所示:探究:(1)若∠1=70°,∠MKN=°;(2)改变折痕MN位置,△MNK始终是三角形,请说明理由;应用:(3)爱动脑筋的小明在研究△MNK的面积时,发现KN边上的高始终是个不变的值.根据这一发现,他很快研究出△KMN的面积最小值为,此时∠1的大小可以为°(4)小明继续动手操作,发现了△MNK面积的最大值.请你求出这个最大值.八年级下册期末考试数学试题答案一、选择题(本大题共6小题,每小题3分,共18分)1.C.2.C.3.B.4.A.5.A.6.D.二、填空题(本大题共6小题,每小题3分,共18分)7.2018.8.1.3.9.20.10.2.11.30.12.(3分)如图,小明用三个等腰三角形(图中①②③)拼成了一个平行四边形ABCD,且∠D>90°>∠C,则∠C=度.解:由题意可知:AD=DE,∴∠DAE=∠DEA,设∠DAE=∠DEA=x,∵四边形ABCD是平行四边形,∴CD∥AB,∠C=∠DAB,∴∠DEA=∠EAB=x,∴∠C=∠DAB=2x,①AE=AB时,若BE=BC,则有∠BEC=∠C,即(180°﹣x)=2x,解得x=36°,∴∠C=72°,若EC=EB,则有∠EBC=∠C=2x,∵∠DAB+∠ABC=180°,∴4x+(180°﹣x)=180°,解得x=,∴∠C=,②EA=EB时,同法可得∠C=72°,综上所述,∠C=72°或.故答案为72°或.三、解答题(本大题共5小题,每小题6分,共30分)13.解:(1)③(2)原式=2﹣=6﹣2=414.解:∵y-3与x成正比例,∴y-3=kx,∵当x=-2时,y=7,∴k=-2,∴y-3=-2x,∴y与x的函数关系式是:y=-2x+3.15.解:(1)x甲=(85+80+75)÷3=80(分),x乙=(80+90+73)÷3=81(分),x丙=(83+79+90)÷3=84(分),则从高到低确定三名应聘者的排名顺序为:丙,乙,甲;(2)甲的总分是:85×60%+80×30%+75×10%=82.5(分),乙的总分是:80×60%+90×30%+73×10%=82.3(分),丙的总分是:83×60%+79×30%+90×10%=82.5(分),∵公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,∴丙排除,∴甲的总分最高,甲被录用.16.(解:(1)∵CD⊥AB,(2)△ABC为直角三角形,理由:∵AD=16,BD=9,∴AB=AD+BD=16+9=25,∵AC2+BC2=202+152=625=252=AB2,∴△ABC为直角三角形.17.解:如图所示:菱形ABCD即为所求:四、解答题(本大题共3小题,每小题8分,共24分)18.(1)证明:∵D、E分别是AB,AC中点,∴DE∥BC,DE=BC,∵CF=BC,∴DE=CF,∴四边形CDEF是平行四边形,(2)解:∵四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF==,∴四边形BDEF的周长是1+1+2+1+=5+.19.解:(1)初中5名选手的平均分,众数b=85,高中5名选手的成绩是:70,75,80,100,100,故中位数c=80;(2)由表格可知初中部与高中部的平均分相同,初中部的中位数高,故初中部决赛成绩较好;(3),∵,∴初中代表队选手成绩比较稳定.20.解:(1)设儿子的速度为x米/分,则父亲的速度为3x米/分,根据题意,得15(x+3x)=3600,解得x=60,所以t=15时,儿子步行的路程为60×15=900(米),点B的坐标为(15,900).设AB所在直线的函数关系式为S=Kt+b,将A(0,3600),B(15,900)代入,得,解得,所以AB所在直线的函数关系式为S=﹣180t+3600;(2)小明从体育中心步行回家取票,用15分钟与父亲相遇,相遇后小明坐父亲的自行车赶回体育中心,所用时间为:=15(分钟),∵15+15=30>25,∴小明不能在演唱会开始前到达体育中心五、解答题(本大题共2小题,每小题9分,共18分)21.解:(1)∵GA平分∠BAD,EC平分∠BCD,∴∠BAG=∠BAD,∠DCE=∠DCB,∵▱ABCD中,∠BAD=∠DCB,AB=CD,∴∠BAG=∠DCE,同理可得,∠ABG=∠CDE,∵在△ABG和△CDE中,,∴△ABG≌△CDE(ASA);(2)四边形EFGH是矩形.证明:∵GA平分∠BAD,GB平分∠ABC,∴∠GAB=∠BAD,∠GBA=∠ABC,∵▱ABCD中,∠DAB+∠ABC=180°,∴∠GAB+∠GBA=(∠DAB+∠ABC)=90°,即∠AGB=90°,同理可得,∠DEC=90°,∠AHD=90°=∠EHG,∴四边形EFGH是矩形;(3)依题意得,∠BAG=∠BAD=30°,∵AB=6,∴BG=AB=3,AG=3=CE,∵BC=4,∠BCF=∠BCD=30°,∴BF=BC=2,CF=2,∴EF=3﹣2=,GF=3﹣2=1,∴矩形EFGH的面积=EF×GF=.22.解:(1)∵正比例函数y=﹣x的图象经过点B(a,2),∴2=﹣a,解得,a=﹣3,∴B(﹣3,2),∵一次函数y=kx+b的图象经过点A(﹣2,4),B(﹣3,2),∴,解得,∴一次函数y=kx+b的解析式为y=2x+8;(2)∵一次函数y=2x+8的图象与x轴交于点C,∴C(﹣4,0),∵正比例函数y=﹣x的图象向下平移m(m>0)个单位长度后经过点C,∴平移后的函数的解析式为y=﹣x﹣m,∴0=﹣×(﹣4)﹣m,解得m=;(3)∵一次函y=kx+b与正比例函数y=﹣x的图象交于点B(﹣3,2),且一次函数y=2x+8的图象与x轴交于点C(﹣4,0),∴关于x的不等式0<﹣x<kx+b的解集是﹣3<x<0.六、解答题(本大题共1

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功