带电粒子在电场中运动题目与答案解析(分类归纳经典)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

带电粒子在电场中的运动一、带电粒子在电场中做偏转运动1.如图所示的真空管中,质量为m,电量为e的电子从灯丝F发出,经过电压U1加速后沿中心线射入相距为d的两平行金属板B、C间的匀强电场中,通过电场后打到荧光屏上,设B、C间电压为U2,B、C板长为l1,平行金属板右端到荧光屏的距离为l2,求:⑴电子离开匀强电场时的速度与进入时速度间的夹角.⑵电子打到荧光屏上的位置偏离屏中心距离.解析:电子在真空管中的运动过分为三段,从F发出在电压U1作用下的加速运动;进入平行金属板B、C间的匀强电场中做类平抛运动;飞离匀强电场到荧光屏间的匀速直线运动.⑴设电子经电压U1加速后的速度为v1,根据动能定理有:21121mveU电子进入B、C间的匀强电场中,在水平方向以v1的速度做匀速直线运动,竖直方向受电场力的作用做初速度为零的加速运动,其加速度为:dmeUmeEa2电子通过匀强电场的时间11vlt电子离开匀强电场时竖直方向的速度vy为:112mdvleUatvy电子离开电场时速度v2与进入电场时的速度v1夹角为α(如图5)则dUlUmdvleUvvtgy112211212∴dUlUarctg1122⑵电子通过匀强电场时偏离中心线的位移dUlUvldmeUaty1212212122142121电子离开电场后,做匀速直线运动射到荧光屏上,竖直方向的位移dUllUtgly1212222∴电子打到荧光屏上时,偏离中心线的距离为)2(22111221lldUlUyyy2.如图所示,在空间中取直角坐标系Oxy,在第一象限内平行于y轴的虚线MN与y轴距离为d,从y轴到MN之间的区域充满一个沿y轴正方向的匀强电场,场强大小为E。初速度可以忽略的电子经过另一个电势差为U的电场加速后,从y轴上的A点以平行于x轴的方向射入第一象限区域,A点坐标为(0,h)。已知电子的电量为e,质量为m,加速电场的电势差U>Ed24h,电子的重力忽略不计,求:(1)电子从A点进入电场到离开该电场区域所经历的时间t和离开电场区域时的速度v;(2)电子经过x轴时离坐标原点O的距离l。解析:(1)由eU=12mv02得电子进入偏转电场区域的初速度v0=2eUm图5设电子从MN离开,则电子从A点进入到离开匀强电场区域的时间t=dv0=dm2eU;y=12at2=Ed24U因为加速电场的电势差U>Ed24h,说明y<h,说明以上假设正确所以vy=at=eEmdm2eU=eEdmm2eU离开时的速度v=v02+vy2=2eUm+eE2d22mU(2)设电子离开电场后经过时间t’到达x轴,在x轴方向上的位移为x’,则x’=v0t’,y’=h-y=h-vy2t=vyt’则l=d+x’=d+v0t’=d+v0(hvy-t2)=d+v0vyh-d2=d2+v0vyh代入解得l=d2+2hUEd一、带电粒子在电场中做圆周运动3.在方向水平的匀强电场中,一不可伸长的不导电细线一端连着一个质量为m、电量为+q的带电小球,另一端固定于O点。将小球拉起直至细线与场强平行,然后无初速释放,则小球沿圆弧作往复运动。已知小球摆到最低点的另一侧,线与竖直方向的最大夹角为(如图)。求:(1)匀强电场的场强。(2)小球经过最低点时细线对小球的拉力。解:(1)设细线长为l,场强为E,因电量为正,故场强的方向为水平向右。从释放点到左侧最高点,由动能定理有0KEGEWW,故)sin1(cosqElmgl,解得mOθ+q)sin1(cosqmgE(2)若小球运动到最低点的速度为v,此时线的拉力为T,由动能定理同样可得221mvqElmgl,由牛顿第二定律得lvmmgT2,联立解得]sin1cos23[mgT4.如图所示,水平轨道与直径为d=0.8m的半圆轨道相接,半圆轨道的两端点A、B连线是一条竖直线,整个装置处于方向水平向右,大小为103V/m的匀强电场中,一小球质量m=0.5kg,带有q=5×10-3C电量的正电荷,在电场力作用下由静止开始运动,不计一切摩擦,g=10m/s2,(1)若它运动的起点离A为L,它恰能到达轨道最高点B,求小球在B点的速度和L的值.(2)若它运动起点离A为L=2.6m,且它运动到B点时电场消失,它继续运动直到落地,求落地点与B点的距离.(1)因小球恰能到B点,则在B点有22dmvmgB(1分)m/s22gdvB(1分)小球运动到B的过程,由动能定理221BmvmgdqEL(1分)m145212qEmgdqEmgdmvLB(1分)(2)小球离开B点,电场消失,小球做平抛运动,设落地点距B点距离为s,由动能定理小球从静止运动到B有221BvmmgdLqEm/s2422mmgdLqEvB(2分)221gtds4.02gdtm258tvxBm4.222xds5.如图所示,在E=103V/m的水平向左匀强电场中,有一光滑半圆形绝缘轨道竖直放置,轨道与一水平绝缘轨道MN连接,半圆轨道所在竖直平面与电场线平行,其半径R=40cm,一带正电荷q=10-4C的小滑块质量为m=40g,与水平轨道间的动摩因数=0.2,取g=10m/s2,求:(1)要小滑块能运动到圆轨道的最高点L,滑块应在水平轨道上离N点多远处释放?(2)这样释放的滑块通过P点时对轨道压力是多大?(P为半圆轨道中点)解析:(1)滑块刚能通过轨道最高点条件是,/2,2smRgvRvmmg滑块由释放点到最高点过程由动能定理:mgEqgRvmSmvRmgmgSEq221212S22=--代入数据得:S=20m(2)滑块过P点时,由动能定理:RmEqgvvmvmvEqRmgRPP)(---221212222在P点由牛顿第二定律:EqmgNRmvEqNP32代入数据得:N=1.5N6.如图所示,在沿水平方向的匀强电场中有一固定点o,用一根长度为l=0.40m的绝缘细线把质量为m=0.20kg,带有正电荷的金属小球悬挂在o点,小球静止在B点时细线与竖直方向的夹角为=037.现将小球拉至位置A使细线水平后由静止释放,求:(1)小球运动通过最低点C时的速度大小.(2)小球通过最低点C时细线对小球的拉力大小.(3)如果要使小球能绕o点做圆周运动,则在A点时沿垂直于OA方向上施加给小球的初速度的大小范围。(g取m/s2,10sin037=O.60,cos037=0.80)解:7.如图所示,在匀强电场中一带正电的小球以某一初速度从绝缘斜面上滑下,并沿与斜面相切的绝缘圆轨道通过最高点.已知斜面倾角为300,圆轨道半径为R,匀强电场水平向右,场强为E,小球质量为m,带电量为Emg33,不计运动中的摩擦阻力,则小球至少应以多大的初速度滑下?在此情况下,小球通过轨道最高点的压力多大?解析:小球的受力如图9所示,从图中可知:3333EmgmgEmgqEtg,030.所以带电小球所受重力和电场力的合力始终垂直于斜面,小球在斜面上做匀速直线运动,其中mgmgF332cos把小球看作处于垂直斜面向下的等效力场F中,等效力加速度gmFg332,,小球在B点的速度最小,为RgRgvB332,,由功能关系可得:,2222121RmgmvmvBARggRRgRgvvBA331033243324,2此即为小球沿斜面下滑的最小速度.图8设C点的速度为vc,则)cos1(2121,22RmgmvmvBCRgRgRgRgvvBC)232()231(334332)cos1(2,2小于球通过最高点C时,向心力由重力和轨道压力提供,因而有:RmvmgNC2mgRRgmmgRmvNC)232(2mg)332(三、带电粒子在交变电场中的偏转8.如图甲所示,A、B是在真空中平行放置的金属板,加上电压后,它们之间的电场可视为匀强电场。A、B两板间距d=15cm。今在A、B两极上加如图乙所示的电压,交变电压的周期T=1.0×10-6s;t=0时,A板电势比B板电势高,电势差0U=108V。一个荷质比mq=1.0×108C/kg的带负电的粒子在t=0时从B板附近由静止开始运动,不计重力。问:(1)当粒子的位移为多大时,粒子速度第一次达到最大值?最大速度为多大?(2)粒子运动过程中将与某一极板相碰撞,求粒子撞击极板时的速度大小。解:(1)带负电的粒子电场中加速或减速的加速度大小为mdqUa=7.2×1011m/s2当粒子的位移为2321Tas=4.0×10-2m,速度最大值为atv=2.4×105m/sBAdtu/VT/2-U0U0T3T/22TT/35T/64T/3图甲图乙(2)一个周期内粒子运动的位移为0s=2×2321Ta-2×2621Ta=6×10-2m由此可以判断粒子在第三个周期内与B板碰撞,因为0sln=2.5在前两个周期内粒子运动的位移为022ss=12×10-2m在第三周期内粒子只要运动s=3cm即与B板碰撞,可知在第三周期的前3T内某时刻就与B板碰撞。sav2=2.0×105m/s9.两块水平平行放置的金属板如图(甲)所示,大量电子(已知电子质量为m、电荷量为e)由静止开始,经电压为U0的电场加速后,连续不断地从两板正中间沿水平方向射人两板间.当两板均不带电时,这些电子通过两板之间的时间为3t0;当在两板间加如图(乙)所示的周期为2t0、幅值恒为U的周期性电压时,恰好能使所有电子均从两板间通过.求(1)这些电子飞离两板间时,侧向位移(即竖直方向上的位移)的最大值symax;(2)这些电子飞离两板间时,侧向位移的最小值symin。10.如图(a),平行金属板A和B间的距离为d,现在A、B板上加上如图(b)所示的方波形电压,t=0时A板比B板的电势高,电压的正向值为U0,反向值也为U0.现有由质量为m的带正电且电荷量为q的粒子组成的粒子束,从AB的中点O以平行于金属板方向OO/的速度v0=033quTdm射入,所有粒子在AB间的飞行时间均为T,不计重力影响.求:(1)粒子飞出电场时的速度;(2)粒子飞出电场时位置离O/点的距离范围解析:(1)打出粒子的速度都是相同的,在沿电场线方向速度大小为0033yuquqTTvdmdm所以打出速度大小为2222000032333yuqTuqTuqTvvvdmdmdm设速度方向与v0的夹角为θ,则001tan303yvv(2)当粒子由tnT时刻进入电场,向下侧移最大,则2220000172223332318ququququTTTTTsdmdmdmdm当粒子由23TtnT时刻进入电场,向上侧移最大,则220022318ququTTsdmdm在距离O/中点下方20718quTdm至上方2018quTdm范围内有粒子打出.11.如左图,在真空中足够大的绝缘水平地面上,一个质量为m=0.2kg,带电量为62.010Cq的小物块处于静止状态,小物块与地面间的动摩擦因数1.0。从t=0时刻开始,空间加上一个如右图所示的场强大小和方向呈周期性变化的电场,(取水平向右的方向为正方向,g取10m/s2。)求:(1)23秒内小物块的位移大小;(2)23秒内电场力对小物块所做的功。解析:(1)0~2s内物块加速度2112m/sEqmgam位移211114m2sat2s末的速度为2114m/svat2~4s内物块加速度2222m/sEqmgam位移214mss4s末的速度为40v因此小物块做周期为4s的加速和减速运动,第22s末的速度也为224m/sv,第23s末的速度232222m/svvat(1st)所求位移为222312247m22vvsst(2)23秒内,设

1 / 11
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功