1教师学生姓名上课日期月日学科数学年级八年级教材版本浙教版类型知识讲解:√考题讲解:√本人课时统计第()课时共()课时学案主题八下第三章《数据分析初步》复习课时数量第()课时授课时段教学目标1、掌握平均数、中位数、众数、极差、方差的概念并进行数据处理;2、发展学生的统计意识和数据处理的方法与能力;教学重点、难点重点:平均数、中位数、众数、极差、方差概念的理解和掌握;难点:会处理实际问题中的统计内容;教学过程知识点复习【知识点梳理】知识点:平均数、众数、中位数、极差、方差、标准差表示数据集中的统计量:平均数、中位数、众数表示数据离散的统计量:方差、标准差1.(算术)平均数算术平均数:一般地,对于n个数x1、x2、……、xn,我们把121(nXxxxn……)叫做n个数的算术平均数,简称平均数,记作X(读作x拔)加权平均数:若一组数据中x1、x2、……、xn的个数分别是f1、f2、……、fn,则这组数据的平均数11221()nnXxfxfxfn……就叫做加权平均数(其中f1+f2+……+fn=n)f1、f2、……、fn分别叫作x1、x2、……、xn的权。“权”越大,对平均数的影响越大.例题(1)2、4、7、9、11、13.这几个数的平均数是_______(2)一组数据同时减去80,所得新的一组数据的平均数为2.3,那么原数据的平均数__________;(3)8个数的平均数是12,4个数的平均为18,则这12个数的平均数为;(4)某人旅行100千米,前50千米的速度为100千米/小时,后50千米速度为为120千米/小时,则此人的平均速度估计为()千米/小时。A、100B、109C、110D、1152.中位数将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。中位数与数据的排列位置有关,当一组数据中的个别数据相差较大时,可用中位数来描述这组数据的几种趋势。例题(1)某小组在一次测试中的成绩为:86,92,84,92,85,85,86,94,92,83,则这个小组本次测试成绩的中位数是()A.85B.86C.92D.87.9(2)将9个数据从小到大排列后,第个数是这组数据的中位数3.众数2一组数据中出现次数最多的数据就是这组数据的众数(mode)(可以是一个数据也可以是多个数据)例题(1)一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为()A.8,9B.8,8C.8.5,8D.8.5,9(2)数据按从小到大排列为1,2,4,x,6,9,这组数据的中位数为5,那么这组数据的众数是A:4B:5C:5.5D:64.极差一组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。表示数据的波动。例题(1)右图是一组数据的折线统计图,这组数据的极差是,平均数是;;(2)10名学生的体重分别是41、48、50、53、49、53、53、51、67(单位:kg),这组数据的极差是()A:27B:26C:25D:245.方差各个数据与平均数之差的平方的平均数,记作s2.用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是s2=[(x1-)2+(x2-)2+…+(xn-)2];方差是反映一组数据的波动大小的一个量,其值越大,波动越大,也越不稳定或不整齐。例题(1)若样本x1+1,x2+1,…,xn+1的平均数为10,方差为2,则对于样本x1+2,x2+2,…,xn+2,下列结论正确的是()A:平均数为10,方差为2B:平均数为11,方差为3C:平均数为11,方差为2D:平均数为12,方差为4(2)方差为2的是()A.1,2,3,4,5B.0,1,2,3,5C.2,2,2,2,2D.2,2,2,3,36.标准差:为了使单位一致,可用方差的算术平方根来表示一组数据偏离平均值的情况,我们把方差的算术平方根称为标准差,记s.标准差是反映一组数据的波动大小的一个量,其值越大,波动越大,也越不稳定或不整齐.(1)关于一组数据的平均数、中位数、众数,下列说法中正确的是()A.平均数一定是这组数中的某个数B.中位数一定是这组数中的某个数C.众数一定是这组数中的某个数D.以上说法都不对(2)选择恰当的统计量分析下面的问题:○1某次数学考试,小明想知道自己的成绩是否处于中等水平.○2为筹备班级联欢会,数学课代表对同学爱吃的几种水果做民意调查,假如你是班长,那么最终选择什么水果,最值得关注的调查数据是什么.○3数学老师对小明参加中考前的5次数学模拟考试成绩进行统计分析,判断小明的数学成绩是否稳定的数据应该是什么.○4反映一组数据的平均水平.第三章数据的初步分析培优训练3(A)选择题1.某校八年级二班的10名团员在“情系芦山”的献爱心捐款活动中,捐款清况如下(单位:元):10,8,12,15,10,12,11,9,13,10,则这组数据的()A、众数是10.5B.方差是3.8C.极差是8D,中位数是102.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的()A.众数B.方差C.平均数D.中位数3.我省某市五月份第二周连续七天的空气质量指数分别为:111,96,47,68,70,77,105,则这七天空气质量指数的平均数是()A.71.8B.77C.82D.95.74.七年级(1)班与(2)班各选出20名学生进行英文打字比赛,通过对参赛学生每分钟输入的单词个数进行统计,两班成绩的平均数相同,(1)班成绩的方差为17.5,(2)班成绩的方差为15,由此可知()A.(1)班比(2)班的成绩稳定B.(2)班比(1)班的成绩稳定C.两个班的成绩一样稳定D.无法确定哪班的成绩更稳定5.某选手在青歌赛中的得分如下(单位:分):99.60,99.45,99.60,99.70,98.80,99.60,99.83,则这位选手得分的众数和中位数分别是()A.99.60,99.70B.99.60,99.60C.99.60,98.80D.99.70,99.606.下列数据是2014年3月7日6点公布的中国六大城市的空气污染指数情况:城市北京合肥南京哈尔滨成都南昌污染指数34216316545227163则这组数据的中位数和众数分别是()A.164和163B.105和163C.105和164D.163和1647.已知一组从小到大的数据:0,4,x,10的中位数是5,则x=()A.5B.6C.7D.88.某校有21名同学们参加某比赛,预赛成绩各不同,要取前11名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这21名同学成绩的()A.最高分B.中位数C.极差D.平均数9.七年级学生完成课题学习“从数据谈节水”后,积极践行“节约用水,从我做起”,下表是从七年级400名学生中选出10名学生统计各自家庭一个月的节水情况:4节水量(m3)0.20.250.30.40.5家庭数(个)12241那么这组数据的众数和平均数分别是()A.0.4和0.34B.0.4和0.3C.0.25和0.34D.0.25和0.310.某棵果树前x年的总产量y与x之间的关系如图所示,从目前记录的结果看,前x年的年平均产量最高,则x的值为()A.3B.5C.7D.9(第10题)(第15题)二.填空题11.数据﹣2,﹣1,0,3,5的方差是12.若一组2,﹣1,0,2,﹣1,a的众数为2,则这组数据的平均数为13.一组数据3,4,6,8,x的中位数是x,且x是满足不等式组0503xx的整数,则这组数据的平均数是14.某次数学测验中,某班六位同学的成绩分别是:86,79,81,86,90,84,这组数据的众数是,中位数是15.某校九年级420名学生参加植树活动,随机调查了50名学生植树的数量,并根据数据绘制了如下条形统计图,请估计该校九年级学生此次植树活动约植树棵.16.若3,a,4,5的众数是4,则这组数据的平均数是17.某中学举行歌咏比赛,以班为单位参赛,评委组的各位评委给九(三)班的演唱打分情况为:89、92、92、95、95、96、97、,从中去掉一个最高分和一个最低分,余下的分数的平均数是最后得分,则该班的得分为18.一组正整数2、3、4、x从小到大排列,已知这组数据的中位数和平均数相等,那么x的值是19.有5个从小到大排列的正整数,中位数是3,唯一的众数是8,则这5个数的和为20.甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:吨/公顷)5品种第1年第2年第3年第4年第5年甲9.89.910.11010.2乙9.410.310.89.79.8经计算,10甲x,10—乙x,试根据这组数据估计中水稻品种的产量比较稳定.三.解答题21.在一次考试中,从全体参加考试的1000名学生中随机抽取了120名学生的答题卷进行统计分析.其中,某个单项选择题答题情况如下表(没有多选和不选):选项ABCD选择人数1559010(1)根据统计表画出扇形统计图;要求:画图前先求角;画图可借助任何工具,其中一个角的作图用尺规作图(保留痕迹,不写作法和证明);统计图中标注角度.(2)如果这个选择题满分是3分,正确的选项是C,则估计全体学生该题的平均得分是多少?22.2014年5月7日浙江省11个城市的空气质量指数(AQI)如图所示:6(1)这11个城市当天的空气质量指数的极差、众数和中位数分别是多少?(2)当0≤AQI≤50时,空气质量为优.求这11个城市当天的空气质量为优的频率;(3)求宁波、嘉兴、舟山、绍兴、台州五个城市当天的空气质量指数的平均数.23.某班同学分三组进行数学活动,对七年级400名同学最喜欢喝的饮料情况,八年级300名同学零7花钱的最主要用途情况,九年级300名同学完成家庭作业时间情况进行了全面调查,并分别用扇形图、频数分布直方图、表格来描述整理得到的数据.根据以上信息,请回答下列问题:(1)七年级400名同学中最喜欢喝“冰红茶”的人数是多少?(2)补全八年级300名同学中零花钱的最主要用途情况频数分布直方图;(3)九年级300名同学中完成家庭作业的平均时间大约是多少小时?(结果保留一位小数)24.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初8中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.平均数(分)中位数(分)众数(分)初中部85高中部85100课后作业练习题学生成长记录本节课教学计划完成情况:照常完成□提前完成□延后完成□____________________________学生的接受程度:54321______________________________学生的课堂表现:很积极□比较积极□一般积极□不积极□___________________________学生上次作业完成情况:优□良□中□差□存在问题_____________________________备注签字时间