测试信号分析与处理实验报告

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

实验二快速傅立叶变换一.实验目的1.掌握用窗函数法设计FFT快速傅里叶的原理和方法;2.熟悉FFT快速傅里叶特性;3.了解各种窗函数对快速傅里叶特性的影响。二.实验设备PC兼容机一台,操作系统为Windows7,安装CodeComposerStudio6.0软件三.实验原理1.FFT的原理和参数生成公式:FFT并不是一种新的变换,它是离散傅立叶变换(DFT)的一种快速算法。由于我们在计算DFT时一次复数乘法需用四次实数乘法和二次实数加法;一次复数加法则需二次实数加法。每运算一个X(k)需要4N次复数乘法及2N+2(N-1)=2(2N-1)次实数加法。所以整个DFT运算总共需要4N^2次实数乘法和N*2(2N-1)=2N(2N-1)次实数加法。如此一来,计算时乘法次数和加法次数都是和N^2成正比的,当N很大时,运算量是可观的,因而需要改进对DFT的算法减少运算速度。根据傅立叶变换的对称性和周期性,我们可以将DFT运算中有些项合并。我们先设序列长度为N=2^L,L为整数。将N=2^L的序列x(n)(n=0,1,……,N-1),按N的奇偶分成两组,也就是说我们将一个N点的DFT分解成两个N/2点的DFT,他们又重新组合成一个如下式所表达的N点DFT:一般来说,输入被假定为连续的。当输入为纯粹的实数的时候,我们就可以利用左右对称的特性更好的计算DFT。我们称这样的RFFT优化算法是包装算法:首先2N点实数的连续输入称为“进包”。其次N点的FFT被连续运行。最后作为结果产生的N点的合成输出是“打开”成为最初的与DFT相符合的2N点输入。使用这一思想,我们可以划分FFT的大小,它有一半花费在包装输入O(N)的操作和打开输出上。这样的RFFT算法和一般的FFT算法同样迅速,计算速度几乎都达到了两次DFT的连续输入。程序流程图如下:四.实验步骤1.实验准备:设置软件仿真模式,启动CCS2.打开工程,浏览程序3.编译并下载程序。4.打开观察窗口:*选择菜单View-Graph-Time/Frequency…进行如下图所示设置。5.清除显示:在以上打开的窗口中单击鼠标右键,选择弹出式菜单中“ClearDisplay”功能。6.设置断点:在程序FFT.c中有注释“breakpoint”的语句上设置软件断点。7.运行并观察结果。⑴选择“Debug”菜单的“Animate”项,或按Alt+F5键运行程序。⑵观察“TestWave”窗口中时域图形;⑶在“TestWave”窗口中点击右键,选择属性,更改图形显示为FFT。观察频域图形。⑷观察“FFT”窗口中的由CCS计算出的正弦波的FFT。8.退出CCS。五.实验结果及分析1.输入频率成份为f的正弦波信号,进行FFT变换后观察谱线特性;并尝试改变f的大小,观察谱线的移动情况。图1.1f=1000Hz正弦波FFT变换后谱线特性图1.2f=2000Hz正弦波FFT变换后谱线特性图1.3f=3000Hz正弦波FFT变换后谱线特性可以观察到随着频率的增加,频谱的波峰往中间靠拢。2.对同时含有频率成份f、2f和3f的正弦信号进行FFT变换,观看信号在频域内的特性。2.1f=1KHz同时含有3个正弦信号FFT变换后的谱线特性2.2f=2KHz同时含有3个正弦信号FFT变换后的谱线特性2.3f=3KHz同时含有3个正弦信号FFT变换后的谱线特性当频率为1KHz时,并不能将3个正弦信号的波峰分辨出来,增加到2KHz时可以看出由3个正弦波叠加而成,当增加到3KHz的时候,分辨较为明显。3.对其他信号(如方波、三角波)进行FFT变换,观看不同信号在频域内的特性。图3.1f=2KHz方波FFT变换后谱线特性图3.2f=2KHz三角波FFT变换后谱线特性图3.3f=2KHz斜波FFT变换后谱线特性方波的fft后的频谱出现了若干小波峰,三角波下降的比较平缓,没有太大波动,斜波下降过程中出现了很多毛刺。实验四无限冲激响应数字滤波器一.实验目的1.掌握设计IIR数字滤波器的原理和方法。2.熟悉IIR数字滤波器特性。3.了解IIR数字滤波器的设计方法。二.实验设备PC兼容机一台,操作系统为Windows7,安装CodeComposerStudio6.0软件三.实验原理1.无限冲激响应数字滤波器的基础理论。2.模拟滤波器原理(巴特沃斯滤波器、切比雪夫滤波器、椭圆滤波器、贝塞尔滤波器)。3.数字滤波器系数的确定方法。4.根据要求设计低通IIR滤波器:要求:低通巴特沃斯滤波器在其通带边缘1kHz处的增益为-3dB,12kHz处的阻带衰减为30dB,采样频率25kHz。设计:-确定待求通带边缘频率fp1Hz、待求阻带边缘频率fs1Hz和待求阻带衰减-20logδsdB。模拟边缘频率为:fp1=1000Hz,fs1=12000Hz阻带边缘衰减为:-20logδs=30dB-用Ω=2πf/fs把由Hz表示的待求边缘频率转换成弧度表示的数字频率,得到Ωp1和Ωs1。Ωp1=2πfp1/fs=2π1000/25000=0.08π弧度Ωs1=2πfs1/fs=2π12000/25000=0.96π弧度-计算预扭曲模拟频率以避免双线性变换带来的失真。由w=2fstan(Ω/2)求得wp1和ws1,单位为弧度/秒。wp1=2fstan(Ωp1/2)=6316.5弧度/秒ws1=2fstan(Ωs1/2)=794727.2弧度/秒-由已给定的阻带衰减-20logδs确定阻带边缘增益δs。因为-20logδs=30,所以logδs=-30/20,δs=0.03162-计算所需滤波器的阶数:因此,一阶巴特沃斯滤波器就足以满足要求。-一阶模拟巴特沃斯滤波器的传输函数为:H(s)=wp1/(s+wp1)=6316.5/(s+6316.5)由双线性变换定义s=2fs(z-1)/(z+1)得到数字滤波器的传输函数为:因此,差分方程为:y[n]=0.7757y[n-1]+0.1122x[n]+0.1122x[n-1]。四.实验步骤1.实验准备:设置软件仿真模式,启动CCS2.打开工程,浏览程序3.编译并下载程序。4.打开观察窗口:选择菜单View-Graph-Time/Frequency…进行如下图所示设置。5.清除显示:在以上打开的窗口中单击鼠标右键,选择弹出式菜单中“ClearDisplay”功能。6.设置断点:在程序iir.c中有注释“breakpoint”的语句上设置软件断点。7.运行并观察结果:⑴选择“Debug”菜单的“Animate”项,或按Alt+F5键运行程序。⑵观察“IIR”窗口中时域图形;观察滤波效果。8.退出CCS五.实验结果及分析1.对同时含有频率成份f、2f和3f的正弦信号进行滤波,分别设计低通、高通、带通和带阻滤波器,观察滤波后的波形。1.1低通滤波器图1.1.1低通滤波器matlab仿真由上图可知采样频率为5KHz,通带为500Hz,阻带为1000Hz,通带边频率的衰减不大于0.5db,阻带衰减为40db图1.1.2低通滤波器f=300Hz信号发生器图1.1.3低通滤波器f=300Hz滤波后的示波器波形由matlab仿真可知,通带为500Hz,阻带为1000Hz,f=300Hz,600Hz,900Hz时,都能通过滤波,高于500Hz的增益略有衰减但是整体波形大致不变。图1.1.4低通滤波器f=500Hz信号发生器图1.1.5低通滤波器f=500Hz滤波后的示波器波形由matlab仿真可知,通带为500Hz,阻带为1000Hz,f=500Hz,1000Hz都能通过滤波,高于500Hz的增益略有衰减但是整体波形大致不变,f=1500Hz时,将会被过滤掉,示波器波形有两个波峰,验证了此现象。图1.1.6低通滤波器f=1000Hz信号发生器图1.1.7低通滤波器f=1000Hz滤波后的示波器波形由matlab仿真可知,通带为500Hz,阻带为1000Hz,f=1000Hz能通过滤波,高于500Hz的增益略有衰减但是整体波形大致不变,f=2000Hz,3000Hz时,将会被过滤掉,示波器波形有1个波峰,验证了此现象。1.2高通滤波器图1.2.1高通滤波器matlab仿真由上图可知采样频率为5KHz,阻带为500Hz,通带为1000Hz,通带边频率的衰减不大于0.5db,阻带衰减为40db。图1.2.23f叠加高通滤波器f=400Hz信号发生器图1.2.33f叠加高通滤波器f=400Hz滤波后示波器波形由matlab仿真可知,阻带为500Hz,通带为1000Hz,f=800Hz,1200Hz能通过滤波,低于1000Hz的增益略有衰减但是整体波形大致不变,f=400Hz时,将会被过滤掉,示波器波形有2个波峰,验证了此现象。图1.2.6单f高通滤波器f=1000Hz信号发生器图1.2.7单f高通滤波器f=1000Hz滤波后示波器波形由matlab仿真可知,阻带为500Hz,通带为1000Hz,f=1000Hz能通过滤波,由于高通滤波器参数取得并不是很好,示波器波形会有些失真。1.3带阻滤波器图1.3.1带阻滤波器matlab仿真由上图可知采样频率为5KHz,下阻带为500Hz,上阻带为1500Hz,阻带为1000Hz,通带边频率的衰减不大于0.5db,阻带衰减为40db图1.3.22f带阻滤波器f=500Hz滤波后由matlab仿真可知,下阻带为500Hz,上阻带为1500Hz,阻带为1000Hz,,f=500Hz能通过滤波,f=1000Hz将会被过滤掉,示波器波形有1个波峰,验证了此现象。1.4带通滤波器图1.4.1带通滤波器matlab仿真由上图可知采样频率为5KHz,下通带为500Hz,上通带为1500Hz,通带为1000Hz,通带边频率的衰减不大于0.5db,阻带衰减为40db图1.4.23f带通滤波器f=500Hz信号发生器图1.4.33f带通滤波器f=500Hz示波器由matlab仿真可知,下通带为500Hz,上通带为1500Hz,通带为1000Hz,f=1000Hz能通过滤波,f=500Hz,1500Hz将会被过滤掉,示波器波形有1个波峰,验证了此现象。图1.4.43f带通滤波器f=1000Hz信号发生器图1.4.53f带通滤波器f=1000Hz滤波后示波器由matlab仿真可知,下通带为500Hz,上通带为1500Hz,通带为1000Hz,f=1000Hz能通过滤波,f=2000Hz,3000Hz将会被过滤掉,示波器波形有1个波峰,验证了此现象。2.对带有噪声的不同输入信号(如:正弦波、方波、三角波)进行IIR滤波,观看滤除噪声后的波形图2.13f带通方波f=1000Hz信号发生器图2.23f带通方波f=1000Hz信号示波器波形由matlab仿真可知,下通带为500Hz,上通带为1500Hz,通带为1000Hz,f=1000Hz能通过滤波,f=2000Hz,3000Hz将会被过滤掉,示波器波形有1个波峰,验证了此现象。

1 / 20
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功