三角函数诱导公式练习题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

..word版本三角函数诱导公式练习题选择题1、已知函数f(x)=sin,g(x)=tan(π﹣x),则()A、f(x)与g(x)都是奇函数B、f(x)与g(x)都是偶函数C、f(x)是奇函数,g(x)是偶函数D、f(x)是偶函数,g(x)是奇函数2、点P(cos2009°,sin2009°)落在()A、第一象限B、第二象限C、第三象限D、第四象限3、已知,则=()A、B、C、D、4、若tan160°=a,则sin2000°等于()A、B、C、D、﹣5、已知cos(+α)=﹣,则sin(﹣α)=()A、﹣B、C、﹣D、6、函数的最小值等于()A、﹣3B、﹣2C、D、﹣17、本式的值是()A、1B、﹣1C、D、8、已知且α是第三象限的角,则cos(2π﹣α)的值是()A、B、C、D、9、已知f(cosx)=cos2x,则f(sin30°)的值等于()A、B、﹣C、0D、110、已知sin(a+)=,则cos(2a﹣)的值是()A、B、C、﹣D、﹣11、若,,则的值为()A、B、C、D、12、已知,则的值是()..word版本A、B、C、D、13、已知cos(x﹣)=m,则cosx+cos(x﹣)=()A、2mB、±2mC、D、14、设a=sin(sin20080),b=sin(cos20080),c=cos(sin20080),d=cos(cos20080),则a,b,c,d的大小关系是()A、a<b<c<dB、b<a<d<cC、c<d<b<aD、d<c<a<b15、在△ABC中,①sin(A+B)+sinC;②cos(B+C)+cosA;③tantan;④,其中恒为定值的是()A、②③B、①②C、②④D、③④16、已知tan28°=a,则sin2008°=()A、B、C、D、17、设,则值是()A、﹣1B、1C、D、18、已知f(x)=asin(πx+α)+bcos(πx+β)+4(a,b,α,β为非零实数),f(2007)=5,则f(2008)=()A、3B、5C、1D、不能确定19、给定函数①y=xcos(+x),②y=1+sin2(π+x),③y=cos(cos(+x))中,偶函数的个数是()A、3B、2C、1D、020、设角的值等于()A、B、﹣C、D、﹣21、在程序框图中,输入f0(x)=cosx,则输出的是f4(x)=﹣csx()A、﹣sinxB、sinxC、cosxD、﹣cosx二、填空题(共9小题)22、若(﹣4,3)是角终边上一点,则Z的值为...word版本23、△ABC的三个内角为A、B、C,当A为°时,取得最大值,且这个最大值为.24、化简:=25、化简:=.26、已知,则f(1)+f(2)+f(3)+…+f(2009)=.27、已知tanθ=3,则(π﹣θ)=.28、sin(π+)sin(2π+)sin(3π+)…sin(2010π+)的值等于.29、f(x)=,则f(1°)+f(2°)+…+f(58°)+f(59°)=.30、若,且,则cos(2π﹣α)的值是...word版本答案与评分标准一、选择题(共21小题)1、已知函数f(x)=sin,g(x)=tan(π﹣x),则()A、f(x)与g(x)都是奇函数B、f(x)与g(x)都是偶函数C、f(x)是奇函数,g(x)是偶函数D、f(x)是偶函数,g(x)是奇函数考点:函数奇偶性的判断;运用诱导公式化简求值。专题:计算题。分析:从问题来看,要判断奇偶性,先对函数用诱导公式作适当变形,再用定义判断.解答:解:∵f(x)=sin=cos,g(x)=tan(π﹣x)=﹣tanx,∴f(﹣x)=cos(﹣)=cos=f(x),是偶函数g(﹣x)=﹣tan(﹣x)=tanx=﹣g(x),是奇函数.故选D.点评:本题主要考查函数奇偶性的判断,判断时要先看定义域,有必要时要对解析式作适当变形,再看f(﹣x)与f(x)的关系.2、点P(cos2009°,sin2009°)落在()A、第一象限B、第二象限C、第三象限D、第四象限考点:象限角、轴线角;运用诱导公式化简求值。专题:计算题。分析:根据所给的点的坐标的横标和纵标,把横标和纵标整理,利用三角函数的诱导公式,判断出角是第几象限的角,确定三角函数值的符号,得到点的位置.解答:解:∵cos2009°=cos(360°×5+209°)=cos209°∵209°是第三象限的角,∴cos209°<0,∵sin2009°=sin(360°×5+209°)=sin209°∵209°是第三象限的角,∴sin209°<0,∴点P的横标和纵标都小于0,∴点P在第三象限,故选C点评:本题考查三角函数的诱导公式,考查根据点的坐标中角的位置确定坐标的符号,本题运算量比较小,是一个基础题.3、已知,则=()A、B、C、D、考点:任意角的三角函数的定义;运用诱导公式化简求值。专题:计算题。分析:求出cosa=,利用诱导公式化简,再用两角差的余弦公式,求解即可.解答:解:cosa=,cos(+a)=cos(2π﹣+a)=cos(a﹣)=cosacos+sinasin=×+×=...word版本故选B.点评:本题考查任意角的三角函数的定义,运用诱导公式化简求值,考查计算能力,是基础题.4、若tan160°=a,则sin2000°等于()A、B、C、D、﹣考点:同角三角函数间的基本关系;运用诱导公式化简求值。专题:计算题。分析:先根据诱导公式把已知条件化简得到tan20°的值,然后根据同角三角函数间的基本关系,求出cos20°的值,进而求出sin20°的值,则把所求的式子也利用诱导公式化简后,将﹣sin20°的值代入即可求出值.解答:解:tan160°=tan(180°﹣20°)=﹣tan20°=a<0,得到a<0,tan20°=﹣a∴cos20°===,∴sin20°==则sin2000°=sin(11×180°+20°)=﹣sin20°=.故选B.点评:此题考查学生灵活运用诱导公式及同角三角函数间的基本关系化简求值,是一道基础题.学生做题时应注意a的正负.5、已知cos(+α)=﹣,则sin(﹣α)=()A、﹣B、C、﹣D、考点:同角三角函数间的基本关系;运用诱导公式化简求值。专题:计算题。分析:利用诱导公式化简sin(﹣α)为cos(+α),从而求出结果.解答:解:sin(﹣α)=cos[﹣(﹣α)]=cos(+α)=﹣.故选A点评:本题考查诱导公式,两角和与差的余弦函数,两角和与差的正弦函数,考查计算能力,是基础题.6、(2004•贵州)函数的最小值等于()A、﹣3B、﹣2C、D、﹣1考点:运用诱导公式化简求值。专题:综合题。..word版本分析:把函数中的sin(﹣x)变形为sin[﹣(+x)]后利用诱导公式化简后,合并得到一个角的余弦函数,利用余弦函数的值域求出最小值即可.解答:解:y=2sin(﹣x)﹣cos(+x)=2sin[﹣(+x)]﹣cos(+x)=2cos(+x)﹣cos(+x)=cos(+x)≥﹣1所以函数的最小值为﹣1故选D点评:此题考查学生灵活运用诱导公式化简求值,会根据余弦函数的值域求函数的最值,是一道综合题.做题时注意应用(﹣x)+(+x)=这个角度变换.7、本式的值是()A、1B、﹣1C、D、考点:运用诱导公式化简求值。专题:计算题。分析:利用诱导公式及三角函数的奇偶性化简可得值.解答:解:原式=sin(4π﹣)﹣cos(4π+)+tan(4π+)=﹣sin﹣cos+tan=﹣+×+×=1故选A点评:此题为一道基础题,要求学生会灵活运用诱导公式化简求值,掌握三角函数的奇偶性.化简时学生应注意细心做题,注意符号的选取.8、已知且α是第三象限的角,则cos(2π﹣α)的值是()A、B、C、D、考点:运用诱导公式化简求值。专题:计算题。分析:由已知中且α是第三象限的角,我们易根据诱导公式求出sinα,cosα,再利用诱导公式即可求出cos(2π﹣α)的值.解答:解:∵且α是第三象限的角,∴,∴∴cos(2π﹣α)=故选B点评:本题考查的知识点是运用诱导公式化简求值,熟练掌握诱导公式是解答本题的关键,解答中易忽略α是第三象限的角,而选解为D..word版本9、已知f(cosx)=cos2x,则f(sin30°)的值等于()A、B、﹣C、0D、1考点:运用诱导公式化简求值。专题:计算题。分析:利用诱导公式转化f(sin30°)=f(cos60°),然后求出函数值即可.解答:解:因为f(cosx)=cos2x所以f(sin30°)=f(cos60°)=cos120°=﹣,故选B.点评:本题是基础题,考查函数值的求法,注意诱导公式的应用是解题的关键.10、已知sin(a+)=,则cos(2a﹣)的值是()A、B、C、﹣D、﹣考点:运用诱导公式化简求值。专题:计算题。分析:把已知条件根据诱导公式化简,然后把所求的式子利用二倍角的余弦函数公式化简后代入即可求出值.解答:解:sin(a+)=sin[﹣(﹣α)]=cos(﹣α)=cos(α﹣)=,则cos(2α﹣)=2﹣1=2×﹣1=﹣故选D点评:考查学生灵活运用诱导公式及二倍角的余弦函数公式化简求值.11、若,,则的值为()A、B、C、D、考点:运用诱导公式化简求值;三角函数值的符号;同角三角函数基本关系的运用。专题:计算题。分析:角之间的关系:(﹣x)+(+x)=及﹣2x=2(﹣x),利用余角间的三角函数的关系便可求之.解答:解:∵∴,cos(﹣x)>0,cos(﹣x)===.∵(﹣x)+(+x)=,∴cos(+x)=sin(﹣x)①...word版本又cos2x=sin(﹣2x)=sin2(﹣x)=2sin(﹣x)cos(﹣x)②,将①②代入原式,∴===故选B点评:本题主要考查三角函数式化简求值.用到了诱导公式及二倍角公式及角的整体代换.三角函数中的公式较多,应强化记忆,灵活选用.12、已知,则的值是()A、B、C、D、考点:运用诱导公式化简求值。专题:计算题。分析:由sinθ>0,sinθcosθ<0,得到cosθ<0,利用同角三角函数间的基本关系求出cosθ的值,把所求式子利用诱导公式化简后,将sinθ和cosθ的值代入即可求出值.解答:解:由sinθ=>0,sinθcosθ<0,得到cosθ<0,得到cosθ=﹣=﹣,则=sinθcosθ=×(﹣)=﹣.故选B点评:此题考查学生灵活运用同角三角函数间的基本关系化简求值,灵活运用诱导公式化简求值,是一道基础题.13、已知cos(x﹣)=m,则cosx+cos(x﹣)=()A、2mB、±2mC、D、考点:运用诱导公式化简求值。专题:计算题。分析:先利用两角和公式把cos(x﹣)展开后加上cosx整理,进而利用余弦的两角和公式化简,把cos(x﹣)的值代入即可求得答案.解答:解:cosx+cos(x﹣)=cosx+cosx+sinx=(cosx+sinx)=cos(x﹣)=m故选C.点评:本题主要考查了利用两角和与差的余弦化简整理.考查了学生对三角函数基础公式的熟练应用.14、设a=sin(sin20080),b=sin(cos20080),c=cos(sin20080),d=cos(cos20080),则a,b,c,d的大小关系是()..word版本A、a<b<c<dB、b<a<d<cC、c<d<b<aD、d<c<a<b考点:运用诱导公式化简求值。专题:计算题;综合题。分析:因为2008°=3×360°+180°+28°分别利用诱导公式对a、b、c、d进行化简,利用正弦、余弦函数图象及增减性比较大小即可.解答:解:a=sin(sin2008°)=sin(﹣sin28°)=﹣sin(sin28°);b=sin(cos2008°)=sin(﹣cos28°)=﹣sin(cos28°);c=cos(sin2008°)=cos(﹣sin28°)=cos(sin28°);d=cos(cos2008°)=cos(﹣cos28°)=cos(cos28°).根据正弦、余弦函数的图象可知a<0,b<0;c>0,d>0.又因为

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功