第三节分部积分法的主要适用于以下类型:(1)dxexx令dxedvxux(2)dxxxcos令xdxdvxucos(3)dxxexcos令xdxdveuxcos(4)dxxxln令xdxdvxuln(5)dxxxarctan令xdxdvxuarctanTh1:(分部积分法:)如果函数)(),(xvxu,都可导,则vduuvdvuvduudvuv)d(,vduuvdudv)(,公式:vduuvudv,选取u和dv需考虑以下两点注:(1)v要较容易求出(2)duv要比原积分dvu更容易求出e.g1求dxexxe.g2求dxexx2e.g3求dxxxcose.g4求dxxx2sin2e.g5.求dxxexcose.g6.求dxxxlne.g7求dxxxarctane.g8求dxexe.g9求dxxsec3e.g10求dxxsinln分部积分法习题:1.求下列函数的不定积分(1)dxxx2cos(2)dxxxxcossin(3)dxxxx2sin)65(2(4)dttt)sin((5)dxxx2tan(6)dxexx35(7)dxxex2)2((8)dxxxln5(9)dxxx2)ln((10)dxxalog(11)dxxx)ln(sincos(12)dxxx2ln(13)dxxxx11ln(14)dxxxxln)13(2(15)dxxx)1ln(2(16)dxxx2)1(ln(17)dxxx1)1ln((18)dxxex3sin2(19)dxx1arccos(20)dxxarctan(21)dxxx1arcsin(22)dxxxx221arctan(23)dxxex2sin2(24)dxxx2arctan(25)1sincossincos2xxxdxx(26)dxx)sin(ln答案:(1)cxxx2cos42sin2(2)cxxx2sin812cos4(3)cxxxxxx2cos412sin)52(412cos)65(212(4)cttt)sin(1)cos(2(5)cxxxx2coslntan2(6)ceexxx3331313(7)cxexeexxx32344421(8)cxxx66361ln61(9)cxxxxx2ln2ln2(10)caxxxalnlog(11)cxxxsinsinlnsin(12)cxxxxx23232232716ln98ln32(13)cxxxxx11ln2111ln22(14)cxxxx221)1ln((15)cxxxxxxx)439(ln)233(2323(16)cxxxx1lnln1ln(17)=2Cxxx14)1ln(1(18)=Cxexexx)3cos433sin21(13422(19)=Cxxxx1ln1arccos2(20)=Cxxxxarctanarctan(21)=Cxxx2arcsin12(22)=Cxxxx22)(arctan21)1ln(21arctan(23)=Cexxx2)2cos812sin21(1716(24)Cxxxxxx)1ln(21)(arctan21arctan)(arctan22222(25)=Cx1sin12(26)=Cxxx))cos(ln)(sin(ln2