无锡市滨湖中学2015年10月八年级上月考数

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2015-2016学年江苏省无锡市滨湖中学八年级(上)月考数学试卷(10月份)一、精心选一选(本大题共8题,每题3分,共24分.)1.下面四个中文艺术字中,不是轴对称图形的是()A.B.C.D.2.在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后,仍不一定能保证△ABC≌△A′B′C′,这个补充条件是()A.BC=B′C′B.∠A=∠A′C.AC=A′C′D.∠C=∠C′3.下列结论正确的是()A.有两个锐角相等的两个直角三角形全等B.一条斜边对应相等的两个直角三角形全等C.顶角和底边对应相等的两个等腰三角形全等D.两个等边三角形全等4.下列说法错误的是()A.平面上到角的两边的距离相等的点一定在角的平分线上B.角平分线上任一点到角的两边的距离一定相等C.一个角只有一条角平分线D.一个角有无数条角平分线5.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.△ABC的三条中线的交点B.△ABC三边的中垂线的交点C.△ABC三条角平分线的交点D.△ABC三条高所在直线的交点6.如图的2×4的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有()A.2个B.3个C.4个D.5个7.如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC等于()A.60°B.50°C.45°D.30°8.如图,AB∥CD,AD∥BC;则图中的全等三角形共有()A.5对B.4对C.3对D.2对二、细心填一填(本大题共8题13空,每空2分,共26分)9.已知△ABC≌△DEF,点A与点D.点B与点E分别是对应顶点,(1)若△ABC的周长为32,AB=10,BC=14,则AC=.DE=.EF=.(2)∠A=48°,∠B=53°,则∠D=.∠F=.10.如图,A,B,C三点在同一条直线上,∠A=∠C=90°,AB=CD,请添加一个适当的条件,使得△EAB≌△BCD,理由是.11.小明从镜子里看到镜子对面电子钟的像,如图所示,实际时间是12.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C的射线OC即是∠AOB的平分线.这种做法的依据是.13.如图,在△ABC中,AB=AC=16cm,AB的垂直平分线交AC于点D,如果BC=10cm,那么△BCD的周长是cm.14.如图,在△ABC中,∠C=90°,BD平分∠ABC,交AC于点D,AC=14cm,且CD:AD=2:5,则点D到AB的距离为cm.15.如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有种.16.如图,△ABE和△ADC是△ABC分别沿着AB、AC边翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠α的度数为度.三、认真答一答(本大题共7题,共50分,解答需写出必要的文字说明、演算步骤或证明过程.)17.已知:如图AB∥DE,AB=DE,BE=CF,此时AC与DF有什么关系?试说明理由.18.已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.19.如图,已知△ABC,求作一点P,使P到∠A的两边的距离相等,且PA=PB.20.已知△ABC中,∠BAC=140°,BC=12,AB、AC的垂直平分线分别交BC于E、F,求∠EAF的度数和△AEF的周长.21.如图,公园有一条“Z”字形道路,其中AB∥CD,在E,M,F处各有一个小石凳,且BE=CF,M为BC的中点,请问三个小石凳是否在一条直线上?说出你推断的理由.22.文文和彬彬在证明“有两个角相等的三角形是等腰三角形”这一命题时,画出图形,写出“已知”,“求证”(如图),她们对各自所作的辅助线描述如下:文文:“过点A作BC的中垂线AD,垂足为D”;彬彬:“作△ABC的角平分线AD”.数学老师看了两位同学的辅助线作法后,说:“彬彬的作法是正确的,而文文的作法需要订正.”(1)请你简要说明文文的辅助线作法错在哪里;(2)根据彬彬的辅助线作法,完成证明过程.23.如图1,在Rt△ACB中,∠BAC=90°,AB=AC,分别过B、C两点作过点A的直线l的垂线,垂足为D、E;(1)如图1,当D、E两点在直线BC的同侧时,猜想,BD、CE、DE三条线段有怎样的数量关系?并说明理由.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)如图3,∠BAC=90°,AB=22,AC=28.点P从B点出发沿B→A→C路径向终点C运动;点Q从C点出发沿C→A→B路径向终点B运动.点P和Q分别以每秒2和3个单位的速度同时开始运动,只要有一点到达相应的终点时两点同时停止运动;在运动过程中,分别过P和Q作PF⊥l于F,QG⊥l于G.问:点P运动多少秒时,△PFA与△QAG全等?(直接写出结果即可)2015-2016学年江苏省无锡市滨湖中学八年级(上)月考数学试卷(10月份)参考答案与试题解析一、精心选一选(本大题共8题,每题3分,共24分.)1.下面四个中文艺术字中,不是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解答:解:A、是轴对称图形,不符合题意;B、是轴对称图形,不符合题意;C、不是轴对称图形,符合题意;D、是轴对称图形,不符合题意.故选C.点评:本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后,仍不一定能保证△ABC≌△A′B′C′,这个补充条件是()A.BC=B′C′B.∠A=∠A′C.AC=A′C′D.∠C=∠C′考点:全等三角形的判定.分析:全等三角形的判定可用两边夹一角,两角夹一边,三边相等等进行判定,做题时要按判定全等的方法逐个验证.解答:解:A中两边夹一角,满足条件;B中两角夹一边,也可证全等;C中∠B并不是两条边的夹角,C不对;D中两角及其中一角的对边对应相等,所以D也正确,故答案选C.点评:本题考查了全等三角形的判定;熟练掌握全等三角形的判定,要认真确定各对应关系.3.下列结论正确的是()A.有两个锐角相等的两个直角三角形全等B.一条斜边对应相等的两个直角三角形全等C.顶角和底边对应相等的两个等腰三角形全等D.两个等边三角形全等考点:全等三角形的判定.专题:阅读型.分析:熟练运用全等三角形的判定定理解答.做题时根据已知条件,结合全等的判定方法逐一验证.解答:解:A、有两个锐角相等的两个直角三角形,边不一定相等,有可能是相似形,故选项错误;B、一条斜边对应相等的两个直角三角形,只有两个元素对应相等,不能判断全等,故选项错误;C、顶角和底边对应相等的两个等腰三角形,确定了顶角及底边,即两个等腰三角形确定了,可判定全等,故选项正确;D、两个等边三角形,三个角对应相等,但边长不一定相等,故选项错误.故选C.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.下列说法错误的是()A.平面上到角的两边的距离相等的点一定在角的平分线上B.角平分线上任一点到角的两边的距离一定相等C.一个角只有一条角平分线D.一个角有无数条角平分线考点:角平分线的性质.分析:根据到角的两边距离的点在角的平分线上和角平分线上的点到角的两边距离相等对各选项分析判断即可得解.解答:解:A、平面上到角的两边的距离相等的点一定在角的平分线上,正确,故本选项错误;B、角平分线上任一点到角的两边的距离一定相等,正确,故本选项错误;C、一个角只有一条角平分线,正确,故本选项错误;D、一个角有无数条角平分线,错误,故本选项正确.故选D.点评:本题考查了到角的两边距离的点在角的平分线上和角平分线上的点到角的两边距离相等的性质,是基础题,熟记性质是解题的关键.5.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.△ABC的三条中线的交点B.△ABC三边的中垂线的交点C.△ABC三条角平分线的交点D.△ABC三条高所在直线的交点考点:角平分线的性质.专题:应用题.分析:由于凉亭到草坪三条边的距离相等,所以根据角平分线上的点到边的距离相等,可知是△ABC三条角平分线的交点.由此即可确定凉亭位置.解答:解:∵凉亭到草坪三条边的距离相等,∴凉亭选择△ABC三条角平分线的交点.故选C.点评:本题主要考查的是角的平分线的性质在实际生活中的应用.主要利用了到线段的两个端点的距离相等的点在这条线段的垂直平分线上.6.如图的2×4的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有()A.2个B.3个C.4个D.5个考点:轴对称的性质.专题:网格型.分析:根据题意画出图形,找出对称轴及相应的三角形即可.解答:解:如图:共3个,故选B.点评:本题考查的是轴对称图形,根据题意作出图形是解答此题的关键.7.如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC等于()A.60°B.50°C.45°D.30°考点:全等三角形的判定与性质;多边形内角与外角.分析:首先由已知可求得∠OAD的度数,通过三角形全等及四边形的知识求出∠AEB的度数,然后其邻补角就可求出了.解答:解:∵在△AOD中,∠O=50°,∠D=35°,∴∠OAD=180°﹣50°﹣35°=95°,∵在△AOD与△BOC中,OA=OB,OC=OD,∠O=∠O,∴△AOD≌△BOC,故∠OBC=∠OAD=95°,在四边形OBEA中,∠AEB=360°﹣∠OBC﹣∠OAD﹣∠O,=360°﹣95°﹣95°﹣50°,=120°,又∵∠AEB+∠AEC=180°,∴∠AEC=180°﹣120°=60°.故选:A.点评:本题考查了全等三角形的判定及性质;解题过程中用到了三角形、四边形的内角和的知识,要根据题目的要求及已知条件的位置综合运用这些知识.8.如图,AB∥CD,AD∥BC;则图中的全等三角形共有()A.5对B.4对C.3对D.2对考点:全等三角形的判定.分析:根据已知及全等三角形的判定方法进行分析,从而得到答案.解答:解:∵AB∥CD,AD∥BC,∴四边形ABCD为平行四边形,∴AB=CD,AD=BC,AO=CO,BO=DO,EO=FO,∠DAO=∠BCO,又∠AOB=∠COD,∠AOD=∠COB,∠AOE=∠COF,∴△AOB≌△COD(SSS),△AOD≌△COB(SSS),△ABC≌△CDA(SSS),△ABD≌△CDB(SSS).故图中的全等三角形共有4对.故选B.点评:此题主要考查全等三角形的判定方法,常用的判定方法有AAS,SAS,SSS,ASA等.做题时要从已知条件开始结合图形利用全等的判定方法由易到难逐个寻找.二、细心填一填(本大题共8题13空,每空2分,共26分)9.已知△ABC≌△DEF,点A与点D.点B与点E分别是对应顶点,(1)若△ABC的周长为32,AB=10,BC=14,则AC=8.DE=10.EF=14.(2)∠A=48°,∠B=53°,则∠D=48°.∠F=79°.考点:全等三角形的性质.分析:(1)先在△ABC中,利用△ABC的周长为32,AB=10,BC=14,可求AC,再利用全等

1 / 21
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功