厌氧氨氧化厌氧氨氧化作用即在厌氧条件下由厌氧氨氧化菌利用亚硝酸盐为电子受体,将氨氮氧化为氮气的生物反应过程。这种反应通常对外界条件(pH值、温度、溶解氧等)的要求比较苛刻,但这种反应由于不需要氧气和有机物的参与,因此对其研究和工艺的开发具有可持续发展的意义。厌氧氨氮化一般前置短程硝化工艺,将废水中的一部分氨氮转化成亚硝酸盐。目前在处理焦化废水、垃圾渗滤液等废水方面已经有成功的运用实例。厌氧氨氧化是一个微生物反应,反应产物为氮气。具有一些优点:由于氨直接作反硝化反应的电子供体,可免去外源有机物(甲醇),既可节约运行费用,也可防止二次污染;由于氧得到有效利用,供氧能耗下降;由于部分氨没有经过硝化作用而直接参与厌氧氨氧化反应,产酸量下降,产碱量为零,这样可以减少中和所需的化学试剂,降低运行费用,也可以减轻二次污染。厌氧氨氧化(Anammox)厌氧氨氧化的发现Broda的预言1977年,奥地利理论化学家Broda根据化学反应热力学,预言自然界存在以硝酸盐或亚硝酸盐为氧化剂的氨氧化反应,因为与以氧为氧化剂的氨氧化反应相比,它们释放出的自由能一点也不逊色。序号电子受体化学反应ΔG/(KJ/mol)1氧2NH4++3O2→2NO2-+2H2O+4H+-2412亚硝酸盐NH4++NO2-→N2+2H2O-3353硝酸盐5NH4++3NO3-→4N2+9H2O+2H+-278既然自然界存在自养型亚硝化细菌,能够催化反应1,那么理论上也应该存在另一种自养型细菌,能够催化反应2和反应3。由于当时这种细菌还没有被发现,所以,Broda认为它们是隐藏于自然界的自养型细菌。Mulder的发现20世纪80年代末,荷兰Delft工业大学开始研究三级生物处理系统。在试运期间,Mulder等人发现,生物脱氮流化床反应器除了进行人们所熟知的反硝化外,还进行着人们未知的某个反应使氨消失了。进一步观察发现,除了氨不明去向外,硝酸盐和亚硝酸盐也有一半以上不明去向。而且伴随着氨与硝酸盐(亚硝酸盐)的消失,产气率大幅度提高,气体中的最主要的成分为N2。对生物脱氮流化床反应器所做的氮素和氧化还原平衡发现,氨与硝酸盐之间的反应基本上按照反应3所预期方式进行。理论值与实测值非常接近。为了对这一反应结果进行确认,Mulder等人进一步做了分批培养实验。实验证明,氨确实与硝酸盐同步转化;硝酸盐耗尽时,氨转化也停止;添加硝酸盐后,氨转化继续进行。伴随氨和硝酸盐的转化,累计产气量增加;转化停止时,累计产气量不变。气体的主要成分是N2。至此,Mulder等人认为,生物脱氮流化床反应器中的氨和硝酸盐转化是按Broda所预言的方式进行的,并将其称为厌氧氨氧化。厌氧氨氧化的反应机理Graff等采用15N的示踪实验研究表明,Anammox是通过生物氧化的途径实现的,过程中最可能的电子受体是羟胺(NH2OH),并推测出其代谢途径:厌氧氨氧化菌首先将NO2-转化成NH2OH,再以NH2OH为电子受体将NH4+氧化生成N2H4;N2H4转化成N2,并为NO2-还原成NH2OH提供电子;实验中有少量NO2-被氧化成NO3-。厌氧氨氧化涉及的化学反应为:NH2OH+NH3→N2H4+H2ON2H4→N2+4[H]HNO2+4[H]→NH2OH+H2O厌氧氨氧化工艺的技术要点Anammox工艺的关键是获得足量的厌氧氨氧化菌,并将其有效地保持在装置内,使反应器达到设计的厌氧氨氧化效能。在实施上,不仅要优化营养条件和环境条件,促进厌氧氨氧化菌的生长,同时要设法改善菌体的沉降性能并改进反应器的结构,促使功能菌有效持留。此工艺的技术要点主要包括以下几个方面:温度控制温度是影响细菌生长和代谢的重要环境条件。随着温度的升高,细胞内的生化反应加快,细菌生长加速;超过上限温度后,对温度敏感的细胞组分(如蛋白质和核酸)变性加剧,细菌生长停止,甚至死亡。如果其他条件不变,细菌有一个最适生长温度。郑平的研究表明,当温度从15℃上升到30℃时,厌氧氨氧化速率随之增大,但上升到35℃时反应速率下降,最适温度在30℃左右。Jetten等认为,厌氧氨氧化的温度范围为20--43℃,最适温度为40℃。pH控制在厌氧氨氧化过程中,pH是一个非常重要的环境条件。它对厌氧氨氧化的影响主要来自它对细菌和基质的影响。郑平通过研究发现,当pH从6.0升至7.5时,厌氧氨氧化速率提高;但当pH继续由8.0升至9.5时,厌氧氨氧化速率下降;由此判定,最适pH在7.5到8.0附近。据Strous等人报道,厌氧氨氧化的适宜pH范围为6.7—8.3,最大反应速率出现在pH8.0左右。溶解氧浓度控制Strous等人采用序批式反应器试验了氧对厌氧氨氧化的影响。该反应器以厌氧和好氧交替进行,在充氧期间,没有厌氧氨氧化反应;只有在停止供氧后,才发生厌氧氨氧化反应。试验证明,氧能够抑制厌氧氨氧化活性,但除氧后厌氧氨氧化活性能够恢复。Strous等人进一步考察了氧对厌氧氨氧化的活性抑制浓度。他们发现,在氧浓度为0.5—2.0%空气饱和度的条件下,厌氧氨氧化活性被完全抑制;氧对厌氧氨氧化活性的抑制浓度低于0.5%空气饱和度基质浓度控制基质氨和产物硝酸盐对厌氧氨氧化的活性影响较小,只要氨浓度和硝酸盐浓度低于1000mg/l,就不会对厌氧氨氧化活性产生抑制作用。但是,基质亚硝酸盐对厌氧氨氧化活性影响较大,一旦亚硝酸盐浓度超过100mg/l,就会对厌氧氨氧化活性产生明显的抑制作用。在基质浓度控制中,应重点控制亚硝酸盐浓度,使之低于5mmol/l.负荷控制在反应器容积负荷设定以后,其工作性能有赖于污泥负荷作保障。如果污泥负荷很高,接近或超过最大污泥活性,多余基质将不被转化,如果该基质是氨,则会影响出水水质,如果该基质是亚硝酸盐,甚至会导致反应器失控。防止污泥超负荷的措施是提高污泥浓度。Anammox工艺常见的污泥氨负荷为0.02—0.3kg/(kg•d).泥龄控制由于厌氧氨氧化菌生长缓慢,细胞产率低,维持长泥龄对Anammox工艺具有至关重要的作用。厌氧氨氧化菌的倍增时间长达11d,因此Anammox工艺的泥龄越长越好厌氧氨氧化工艺的先进性与传统的硝化反硝化技术相比,厌氧氨氧化工艺具有很多优点:(1)由于氨可以直接用作反硝化反应的电子供体,因此,不需要外加有机物做电子供体,既可节省费用,又可防止二次污染。(2)硝化反应每氧化1molNH4+耗氧2mol,而在厌氧氨氧化反应中,每氧化1molNH4+只需要0.75mol氧气,耗氧减少62.5%,从而使供氧耗能大幅度下降。(3)传统的硝化反应氧化1molNH4+可产生2molH+,反硝化反应还原1molNO3-或NO2-将产生1molOH-,而厌氧氨氧化反应产酸量大幅度下降,产碱量降至为零,可以节省数量客观的中和试剂,同时防止可能出现的二次污染。厌氧氨氧化工艺存在的主要问题有:(1)在Anammox反应器中,生物产率极低,几乎观察不到厌氧氨氧化菌的生长繁殖,系统必须有相应的生物补给,否则反应器处理能力将下降甚至丧失功能。(2)系统中的生物产率很低,致使水力停留时间比较长,所需的反应器容积很大,废水处理工程的一次投资比较大。(3)系统反应所需要的温度较高,实际中必须考虑环境条件和所需的能耗(4)厌氧氨氧化菌对光和氧十分敏感,整个反应要在黑暗中进行,且不得有空气进入。有空气进入时,出水NO2--N浓度急剧升高,甚至会超过进水NO2--N浓度。因此,厌氧氨氧化工艺需要有很高的技术要求,设备和人员素质都必须满足其要求,难度较大(5)高浓度的氨氮和硝态氮的存在对厌氧氨氧化反应也有抑制作用,因此,该工艺不适用于高浓度含氮废水。改进的途径及建议(1)在厌氧氨氧化的深入研究中,建立相应的自动化监控系统。对Anammox反应器中的溶解氧和生物相进行适时监控,防止不利因素的产生,保证系统在最佳状态下运行。(2)实际应用中,因地制宜,扬长避短,充分利用现场条件及厌氧氨氧化工艺的优越性。如在将渗滤液回灌的垃圾填埋场,厌氧填埋单元就是一个可以利用的大容积厌氧生物反应器,可将其作为Anammox反应器,对垃圾渗滤液中的氨氮进行处理。(3)对厌氧氨氧化的微生物相进行深入研究,确定该类微生物生长代谢的最佳条件及其生长缓慢的原因,为Anammox菌的培养提供理论依据。(4)对厌氧氨氧化反应机理进行深入研究,探讨如何克服高浓度氨氮和硝态氮对反应的抑制作用,拓宽本工艺的适用范围厌氧氨氧化工艺技术----------SHARON-ANAMMOX工艺SHARON工艺就是短程硝化反硝化,在高温和极短的污泥龄条件下,将氨的氧化过程控制在亚硝化阶段,在缺氧条件下进行反硝化。SHARON-ANAMMOX联合工艺是由SHARON和ANAMMOX组成的新型生物脱氮工艺,即在有氧条件下将SHARON反应控制在氨氧化反应的亚硝化阶段,其出水作为ANAMMOX反应器的进水。此联合工艺是迄今为止最简洁的生物脱氮工艺,具有不需要外加碳源及碱度、氧耗小、污泥产量少等优点,对中等及较低浓度的氨氮废水脱氮处理具有极大的实际应用价值厌氧氨氧化的发现使人类对微生物氮循环有了更深入的了解,丰富了微生物学知识。厌氧氨氧化的作用机理已获得了初步认识,但迄今为止仍未分离出纯种的厌氧氨氧化菌,这对微生物学研究方法提出了更高的要求。为早期将其应用于日益严重的氮素污染问题,应加强以下研究:1.改进微生物学研究方法,深入研究厌氧氨氧化菌酶学;2.通过研究厌氧氨氧化菌生长的微生态环境,探讨提高其增殖速度的途径;3.设计合理的反应器,改善厌氧氨氧化污泥持留率。BUYO废水生物脱氮新技术———厌氧氨氧化工艺的研究1厌氧氨氧化的发现及特点1.1厌氧氨氧化的发现厌氧氨氧化(ANAMMOX)是指在厌氧条件下,以亚硝酸盐为电子受体,把氨氮直接氧化成氮气的生物脱氮过程[1]。利用特殊微生物的能力来降解环境中的污染物,可以推进水处理技术的发展。最早的科学预示是在1932年美国Mendota湖沉积物进行发酵试验时,发现通过不明途径产生氮气。日本学者也报道,Kizakiko湖沉积物可直接把氨转化成氮气[2]。1977年,奥地利理论化学家Broda就预言自然界存在反硝化氨氧化的反应[3]。1994年,荷兰Delft大学的Mulder和Vandegraaf等用流化床反应器研究生物反硝化时发现了在反硝化过程中氨氮和硝酸盐成比例的去除并且伴随着氮气生成的现象,他们命名此现象为厌氧氨氧化[4],从而证实了Broda的预言,1995年vandeGraaf等用实验进一步证明厌氧氨氧化是一个厌氧生物反应而非化学反应[5]。1.2厌氧氨氧化的特点厌氧氨氧化工艺的主要特点是以无机物氨代替传统反硝化过程中的有机物为电子供体的新工艺,从而解决了高氨低碳废水中因有机物不足导致的反硝化脱氮效率低的问题;或者看成是以亚硝酸盐代替分子氧作电子受体的硝化过程,比较(1)(2)两式可以看出,厌氧氨氧化工艺的耗氧量比传统的硝化工艺的耗氧量大幅度降低,从而降低了能耗。将厌氧氨氧化反应与硝化反应结合,可望产生新的生物脱氮技术,并具有一些优点:①由于氨直接作反硝化反应的电子供体,可免去外源有机物(甲醇),既节约了运行费用,也防止了二次污染;②由于氧得到了有效利用,供氧能耗下降;③由于部分氨没有经过硝化作用而直接参与了厌氧氨氧化反应,产酸量下降,产碱量为零,这样可以减少中和所需的化学试剂,又降低了运行费用和防止了二次污染。2厌氧氨氧化的反应机理2.1厌氧氨氧化的生化反应方程式NH+4+2O2→NO-3+H2O+2H+△G0'=-349kJ(传统硝化反应)(1)NH+4+NO-2→N2+2H2O△G0'=-358kJ(厌氧氨氧化反应)(2)方程(1)是好氧条件下传统硝化反应方程式,(2)是厌氧条件下Mulder等人推测的厌氧氨氧化的反应方程式。根据化学热力学理论,△G<0说明反应产能,可以自发进行,△G越小说明反应越容易发生;因此比较(1)(2)两式可以清楚地发现,厌氧氨氧化反应是一个产生能量的过程,理论上比传统的好氧硝化反应更容易发生。2.2厌氧氨氧化的生物代谢途径厌氧氨氧化