中国保费收入主要影响因素分析一、研究的目的要求保险作为金融行业的四大支柱之一,同时也是国民经济的重要组成部分,其成长壮大对与国民经济的健康发展有重要意义。近年来,我国保费收入快速增长。但是我国的保险深度和保险密度还处于世界的低水平。同时,我国保险市场结构严重不均衡,区域化差异非常大。因此研究保费收入的影响因素,有利于研究保险业的发展空间,对保险业的发展以及宏观经济的发展有重大的意义。二、模型设定及其估计通过分析,影响中国保费收入的主要因素有:1、总人口(grosspopulation).用P表示,包括城镇人口和农村人口,将其引入模型用来反映人口数量对保费收入的影响。2、居民可支配收入(disposableincome),用I表示,它等于城镇居民人均可支配收入*城镇人口+农村居民人均纯收入*农村人口。将其引入模型来反映居民的支付能力以及经济发展的整体水平,将其引入模型可以观察收入对保费收入的影响。3、城乡居民储蓄存款余额(savingdepositbalanceofcitizenandcountryinhabitant),用S表示,反映居民的储蓄倾向和金融资源数量,将其引入模型可以观察储蓄对保险的替代和收入效应。为此设定了如下形式的计量经济学模型tttttXXXY3423121其中,Y为保费收入,2X为城乡居民储蓄存款余额,3X为总人口,4X为居民可支配收入数据收集如下:我国保费收入/亿元城乡居民储蓄存款/亿元总人口/万人城镇居民可支配收入/亿元1993456.87127295.351185172577.41994376.41548321.271198503496.21995453.31799792.7712112142831996528.333311744.11223894838.91997772.709413724.71236265160.319981255.968715952.11247615425.119991406.171218078.212578658542000159819429.912674362802001210922117.71276276859.62002305426272.91284537702.82003388030949.11292278472.22004431834374.81299889421.62005493239755.1130756104932006564044960.313144811759.52007703645813.613212913785.82008978454621.61328021578120091113765834.813347417175二、估计参数利用Eviews软件,生成Y、2X、3X、4X等数据,采用这些数据对模型进行OLS回归,结果如下:DependentVariable:YMethod:LeastSquaresDate:12/15/11Time:13:53Sample:19932009Includedobservations:17VariableCoefficientStd.Errort-StatisticProb.C24880.216244.7693.9841680.0016X20.1207320.0415912.9028020.0123X3-0.2275360.051949-4.3800130.0007X40.5046230.1610223.1338770.0079R-squared0.990798Meandependentvar3455.164AdjustedR-squared0.988675S.D.dependentvar3330.401S.E.ofregression354.4213Akaikeinfocriterion14.78117Sumsquaredresid1632988.Schwarzcriterion14.97722Loglikelihood-121.6400F-statistic466.5920Durbin-Watsonstat1.206695Prob(F-statistic)0.000000tY=24880.21+0.120732tX2-0.227536tX3+0.504623tX4(6244.769)(0.041591)(0.051949)(0.161022)t=(3.984168)(2.902802)(-4.380013)(3.133877)2R=0.9907982R=0.988675F=466.5920DW=1.206695经济意义检验。在假定其他条件不变的情况下,城乡居民储蓄存款余额每增长1亿元,保费收入增长0.120732亿元;居民可支配收入每增长1亿元,保费收入增长0.504623亿元。这与理论分析和经验判断相一致。拟合优度:从回归的结果来看,2R=0.9907982R=0.988675,这说明模型对样本的拟合很好。F检验:针对0H:2=3=4=0,给定的显著性水平=0.05,在F分布表中查出自由度为k-1=3和n-k=12的临界值F,由回归结果中得到的F明显大于F,应拒绝原假设H0:2=3=4=0,说明回归方程显著,即“城乡居民储蓄存款余额”、“总人口”“居民可支配收入”等变量联合起来确实对“保费收入”有显著影响。t检验:分别针对0H:j=0(j=1,2,3,4),给定的显著性水平=0.05,在t分布表中查出自由度为n-k=12的临界值2/t(n-k)=2.179。由回归结果中的数据可得,与1ˆ、2ˆ、3ˆ、4ˆ对应的t统计分别为3.984168、2.902802、-4.380013、3.133877,其绝对值大于2/t(n-k)=2.179,这说明在显著性水平=0.05下,分别都应当拒绝0H:j=0(j=1,2,3,4),也就是说,当在其他解释变量不变的情况下,解释变量城乡居民储蓄存款余额”、“总人口”“居民可支配收入”分别对被解释变量“保费收入”有显著影响。三、多重共线性检验相关系数矩阵X2X3X4X21.0000000.9309230.991817X30.9309231.0000000.923753X40.9918170.9237531.000000由于关系系数矩阵可以看出,各解释变量互相之间的相关系数较高,正席确实存在严重多重共线性。四、多重共线性修正采用逐步回归的办法,去检验和解决冬虫共线性问题。分别作Y对2X、3X、4X的一元回归,回归结果如下,DependentVariable:YMethod:LeastSquaresDate:12/15/11Time:14:11Sample:19932009Includedobservations:17VariableCoefficientStd.Errort-StatisticProb.C-1717.426273.6313-6.2764240.0000X20.1874770.00844722.195610.0000R-squared0.970452Meandependent3455.164varAdjustedR-squared0.968482S.D.dependentvar3330.401S.E.ofregression591.2570Akaikeinfocriterion15.71251Sumsquaredresid5243773.Schwarzcriterion15.81053Loglikelihood-131.5563F-statistic492.6452Durbin-Watsonstat0.739121Prob(F-statistic)0.000000DependentVariable:YMethod:LeastSquaresDate:12/15/11Time:14:12Sample:19932009Includedobservations:17VariableCoefficientStd.Errort-StatisticProb.C-75756.7511334.35-6.6838180.0000X30.6238030.0892036.9931060.0000R-squared0.765271Meandependentvar3455.164AdjustedR-squared0.749623S.D.dependentvar3330.401S.E.ofregression1666.457Akaikeinfocriterion17.78492Sumsquaredresid41656170Schwarzcriterion17.88294Loglikelihood-149.1718F-statistic48.90353Durbin-Watsonstat0.245450Prob(F-statistic)0.000004DependentVariable:YMethod:LeastSquaresDate:12/15/11Time:14:12Sample:19932009Includedobservations:17VariableCoefficientStd.Errort-StatisticProb.C-2800.139288.7317-9.6980660.0000X40.7630310.03137424.320470.0000R-squared0.975267Meandependentvar3455.164AdjustedR-squared0.973618S.D.dependentvar3330.401S.E.ofregression540.9366Akaikeinfocriterion15.53461Sumsquaredresid4389186.Schwarzcriterion15.63264Loglikelihood-130.0442F-statistic591.4853Durbin-Watsonstat0.703141Prob(F-statistic)0.000000对回归结果进行整理,如下表一元回归估计结果变量2X3X4X参数估计值0.1874770.6238030.763031t统计量22.195616.99310624.320472R0.9704520.7652710.9752672R0.9684820.7496230.973618其中,加入4X的方程2R最大,以4X为基础,顺次加入其他变量逐步回归。结果如下表所示。DependentVariable:YMethod:LeastSquaresDate:12/15/11Time:14:18Sample:19932009Includedobservations:17VariableCoefficientStd.Errort-StatisticProb.C-2443.189434.1735-5.6272170.0001X40.4978570.2441322.0392950.0608X20.0658540.0601321.0951550.2919R-squared0.977219Meandependentvar3455.164AdjustedR-squared0.973965S.D.dependentvar3330.401S.E.ofregression537.3772Akaikeinfocriterion15.57006Sumsquaredresid4042840.Schwarzcriterion15.71710Loglikelihood-129.3455F-statistic300.2730Durbin-Watsonstat0.626973Prob(F-statistic)0.000000DependentVariable:YMethod:LeastSquaresDate:12/15/11Time:14:18Sample:19932009Includedobservations:17VariableCoefficientStd.Errort-S