2012年湖南省张家界市中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(2012•张家界)﹣2012的相反数是()A.﹣2012B.2012C.D.考点:相反数。分析:据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可.解答:解:根据概念,(﹣2012的相反数)+(﹣2012)=0,则﹣2012的相反数是2012.故选B.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(2009•江苏)下面四个几何体中,左视图是四边形的几何体共有()A.1个B.2个C.3个D.4个考点:简单几何体的三视图。分析:四个几何体的左视图:圆柱是矩形,圆锥是等腰三角形,球是圆,正方体是正方形,由此可确定答案.解答:解:因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体,故选B.点评:考查立体图形的左视图,考查学生的观察能力.3.(2012•张家界)下列不是必然事件的是()A.角平分线上的点到角两边的距离相等B.三角形任意两边之和大于第三边C.面积相等的两个三角形全等D.三角形内心到三边距离相等考点:随机事件。分析:必然事件就是一定发生的事件,即发生的概率是1的事件.据此判断即可解答.解答:解:A、为必然事件,不符合题意;B、为必然事件,不符合题意;C、为不确定事件,面积相等的三角形不一定全等,符合题意;D、为必然事件,不符合题意.故选C.点评:本题主要考查必然事件、不可能事件、随机事件的概念,理解概念是解决基础题的主要方法.用到的知识点为:必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.(2012•张家界)如图,直线a、b被直线c所截,下列说法正确的是()A.当∠1=∠2时,一定有a∥bB.当a∥b时,一定有∠1=∠2C.当a∥b时,一定有∠1+∠2=90°D.当∠1+∠2=180°时,一定有a∥b考点:平行线的判定;平行线的性质。专题:探究型。分析:根据平行线的判定定理与性质对各选项进行逐一判断即可.解答:解:A、若∠1=∠2不符合a∥b的条件,故本选项错误;B、若a∥b,则∠1+∠2=180°,∠1不一定等于∠2,故本选项错误;C、若a∥b,则∠1+∠2=180°,故本选项错误;D、如图,由于∠1=∠3,当∠3+∠2=180°时,a∥b,,所以当∠1+∠2=180°时,一定有a∥b,故本选项正确.故选D.点评:本题考查的是平行线的判定与性质,熟知平行线的判定定理与性质是解答此题的关键.5.(2012•张家界)某农户一年的总收入为50000元,如图是这个农户收入的扇形统计图,则该农户的经济作物收入为()A.20000元B.12500元C.15500元D.17500元考点:扇形统计图。分析:因为某农户一年的总收入为50000元,利用扇形图可知该农户的经济作物收入占35%,所以该农户的经济作物收入的钱数为:总收入×经济作物收入所占的百分比,求出得数即为结果.解答:解:∵某农户一年的总收入为50000元,利用扇形图可知该农户的经济作物收入占35%,∴50000×35%=17500(元).故选:D.点评:本题考查了扇形统计图,扇形统计图表现部分占整体的百分比,根据总收入×经济作物收入所占的百分比可求出解是解题关键.6.(2012•张家界)实数a、b在轴上的位置如图所示,且|a|>|b|,则化简的结果为()A.2a+bB.﹣2a+bC.bD.2a﹣b考点:二次根式的性质与化简;实数与数轴。专题:计算题。分析:现根据数轴可知a<0,b>0,而|a|>|b|,那么可知a+b<0,再结合二次根式的性质、绝对值的计算进行化简计算即可.解答:解:根据数轴可知,a<0,b>0,原式=﹣a﹣[﹣(a+b)]=﹣a+a+b=b.故选C.点评:本题考查了二次根式的化简和性质、实数与数轴,解题的关键是注意开方结果是非负数、以及绝对值结果的非负性.7.(2012•张家界)顺次连接矩形四边中点所得的四边形一定是()A.正方形B.矩形C.菱形D.等腰梯形考点:菱形的判定;三角形中位线定理;矩形的性质。分析:因为题中给出的条件是中点,所以可利用三角形中位线性质,以及矩形对角线相等去证明四条边都相等,从而说明是一个菱形.解答:解:连接AC、BD,在△ABD中,∵AH=HD,AE=EB∴EH=BD,同理FG=BD,HG=AC,EF=AC,又∵在矩形ABCD中,AC=BD,∴EH=HG=GF=FE,∴四边形EFGH为菱形.故选C.点评:本题考查了菱形的判定,菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义,②四边相等,③对角线互相垂直平分.8.(2012•张家界)当a≠0时,函数y=ax+1与函数y=在同一坐标系中的图象可能是()A.B.C.D.考点:反比例函数的图象;一次函数的图象。分析:分a>0和a<0两种情况讨论,分析出两函数图象所在象限,再在四个选项中找到正确图象.解答:解:当a>0时,y=ax+1过一、二、三象限,y=过一、三象限;当a<0时,y=ax+1过一、二、四象限,y=过二、四象限;故选C.点评:本题考查了一次函数与二次函数的图象和性质,解题的关键是明确在同一a值的前提下图象能共存.二、填空题(共8小题,每小题3分,满分24分)9.(2011•随州)分解因式:8a2﹣2=2(2a+1)(2a﹣1).考点:提公因式法与公式法的综合运用。分析:先提取公因式2,再根据平方差公式进行二次分解即可求得答案.解答:解:8a2﹣2,=2(4a2﹣1),=2(2a+1)(2a﹣1).故答案为:2(2a+1)(2a﹣1).点评:本题考查了提公因式法,公式法分解因式.注意分解要彻底.10.(2009•重庆)已知△ABC与△DEF相似且面积比为4:25,则△ABC与△DEF的相似比为2:5.考点:相似三角形的性质。分析:根据相似三角形的面积的比等于相似比的平方,可直接得出结果.解答:解:因为△ABC∽△DEF,所以△ABC与△DEF的面积比等于相似比的平方,因为S△ABC:S△DEF=4:25=()2,所以△ABC与△DEF的相似比为2:5.点评:本题比较容易,考查相似三角形的性质.利用相似三角形的性质时,要注意相似比的顺序,同时也不能忽视面积比与相似比的关系.相似比是联系周长、面积、对应线段等的媒介,也是相似三角形计算中常用的一个比值.11.(2012•张家界)一组数据是4、x、5、10、11共有五个数,其平均数为7,则这组数据的众数是5.考点:众数;中位数。分析:首先根据平均数算出x的值,再根据众数的定义:一组数据中出现次数最多的数据叫做众数,可得答案.解答:解:(4+x+5+10+11)÷5=7,解得:x=5,根据众数的定义可得这组数据的众数是5,故答案为:5.点评:此题主要考查了平均数与众数,关键是根据平均数的求法算出x的值.12.(2012•张家界)2012年5月底,三峡电站三十二台机组全部投产发电,三峡工程圆满实现2250万千瓦的设计发电能力.据此,三峡电站每天能发电约540000000度,用科学记数法表示应为5.4×108度.考点:科学记数法—表示较大的数。分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将540000000用科学记数法表示为:5.4×108.故答案为:5.4×108.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(2012•张家界)已知m和n是方程2x2﹣5x﹣3=0的两根,则=﹣.考点:根与系数的关系。分析:利用根与系数的关系可以求得m+n=﹣,m•n=代入代数式求解即可..解答:解:∵m和n是方程2x2﹣5x﹣3=0的两根,∴m+n=﹣=﹣=,m•n==﹣,∴+===﹣故答案为﹣.点评:本题考查了根与系数的关系,解题的关键是牢记根与系数的关系并对代数式进行正确的变形.14.(2012•张家界)已知圆锥的底面直径和母线长都是10cm,则圆锥的侧面积为50πcm2.考点:圆锥的计算。分析:根据圆锥的侧面积=底面周长×母线长÷2求出即可.解答:解:∵底面圆的半径为5cm,则底面周长=10πcm,∴圆锥的侧面积=×10π×10=50πcm2.故答案为:50πcm2.点评:本题考查了圆锥的计算,利用了圆的周长公式和扇形面积公式求解是解题关键.15.(2012•张家界)已知,则x+y=1.考点:非负数的性质:算术平方根;非负数的性质:偶次方。专题:计算题。分析:根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.解答:解:∵,∴,解得,则x+y=﹣1+2=1,故答案为1.点评:本题考查了非负数的性质,利用该性质建立关于x、y的方程组是解题的关键.16.(2012•张家界)已知线段AB=6,C、D是AB上两点,且AC=DB=1,P是线段CD上一动点,在AB同侧分别作等边三角形APE和等边三角形PBF,G为线段EF的中点,点P由点C移动到点D时,G点移动的路径长度为2.考点:梯形中位线定理;等边三角形的性质。专题:动点型。分析:分别延长AE、BF交于点H,易证四边形EPFH为平行四边形,得出G为PH中点,则G的运行轨迹为三角形HCD的中位线MN.再求出CD的长,运用中位线的性质求出MN的长度即可.解答:解:如图,分别延长AE、BF交于点H.∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EPA=60°,∴BH∥PE,∴四边形EPFH为平行四边形,∴EF与HP互相平分.∵G为EF的中点,∴G也正好为PH中点,即在P的运动过程中,G始终为PH的中点,所以G的运行轨迹为三角形HCD的中位线MN.∵CD=6﹣1﹣1=4,∴MN=2,即G的移动路径长为2.故答案为2.点评:本题考查了等腰三角形及中位线的性质,以及动点问题,是中考的热点.三、解答题(共9小题,满分72分)17.(2012•张家界)计算:.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值。分析:利用零指数幂、负指数幂、绝对值以及特殊角的三角函数值的知识,即可求得答案.解答:解:原式=1﹣3+2﹣+3×=﹣+=0.点评:此题考查实数的混合运算.此题难度不大,注意解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、特殊角的三角函数值、绝对值等考点的运算.18.(2012•张家界)如图,在方格纸中,以格点连线为边的三角形叫格点三角形,请按要求完成下列操作:先将格点△ABC向右平移4个单位得到△A1B1C1,再将△A1B1C1绕点C1点旋转180°得到△A2B2C2.考点:作图-旋转变换;作图-平移变换。分析:将△ABC向右平移4个单位后,横坐标变为x+4,而纵坐标不变,所以点A1、B1、C1的坐标可知,确定坐标点连线即可画出图形,将△ABC中的各点A、B、C旋转180°后,得到相应的对应点A2、B2、C2,连接各对应点即得△A2B2C2.解答:解:如图所示:.点评:本题主要考查了图形的平移变换及旋转变换.关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点.19.(2012•张家界)先化简:,再用一个你最喜欢的数代替a计算结果.考点:分式的化简求值。专题:开放型。分析:先根据分式混合运算的法则把原式进行化简,再选取合适的a的值代入进行计算即可.解答:解:原式=×+1=+1∵a≠0,a≠±2,∴a可以等于1,当a=1时,原式=1+1=2.点评:本题考查的是分式的化简求值,在解答此题时要注意a不能取0、2、﹣2.20.(2012•张家界)第七届中博会于2012年5月