理科数学复习专题统计与概率离散型随机变量及其分布列知识点一1、离散型随机变量:随着实验结果变化而变化的变量称为随机变量,常用字母,X,Y,xhggg表示,所有取值可以一一列出的随机变量,称为离散型随机变量。2、离散型随机变量的分布列及其性质:(1)定义:一般的,若离散型随机变量X可能取的不同值为12,,,,,,inxxxxggggggX取每一个值(1,2,,)ixin=ggg的概率为()iiPXxp==,则表X1x2xgggixgggnxp1p2pgggipgggnp称为离散型随机变量离散型随机变量X,简称X的分布列。(2)分布列的性质:①0,1,2,,ipin?ggg;②11niip==å(3)常见离散型随机变量的分布列:①两点分布:若随机变量X的分布列为,则称X服从两点分布,并称(1)pPx==为成功概率②超几何分布:一般的,在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则()(0,1,2,,knkMNMnNCCPXkkmC--===gggg其中min{,}mMn=,且*,,,,)nNMNnMNN#?,称分布列为超几何分布列。如果随机变量X的分布列具有下表的形式,则称随机变量X服从超几何分布X01gggmP00nMNMnNCCC--g11nMNMnNCCC--ggggmnmMNMnNCCC--g3、随机变量的数学期望(均值)与方差x01pp1-p题型一由统计数据求离散型随机变量的分布列【例1】已知一随机变量的分布列如下,且E(ξ)=6.3,则a值为()ξ4a9P0.50.1bA.5B.6C.7D.8【变式1】某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;一旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果:则该公司一年后估计可获收益的期望是________.题型二由古典概型求离散型随机变量的分布列(超几何分布)【例2】在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求:(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X元的概率分布列.投资成功投资失败192次8次【变式2】某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定为3500元;若4杯选对3杯,则月工资定为2800元;否则月工资定为2100元.令X表示此人选对A饮料的杯数.假设此人对A和B两种饮料没有鉴别能力.(1)求X的分布列;(2)求此员工月工资的期望.知识点二1.条件概率及其性质对于两个事件A和B,在已知事件B发生的条件下,事件A发生的概率叫做条件概率,用符号P(A|B)来表示,其公式为P(A|B)=PABPB(P(B)0).在古典概型中,若用n(B)表示事件B中基本事件的个数,则P(A|B)=nABnB.2.相互独立事件(1)对于事件A、B,若事件A的发生与事件B的发生互不影响,称A、B是相互独立事件.(2)若A与B相互独立,则P(AB)=P(A)P(B).(3)若A与B相互独立,则A与B,A与B,A与B也都相互独立.(4)若P(AB)=P(A)P(B),则A与B相互独立.3.二项分布(1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有__两__种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的.(2)在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则P(X=k)=Cknpk(1-p)n-k(k=0,1,2,…,n),此时称随机变量X服从二项分布,记为X~B(n,p),并称p为成功概率.题型三条件概率例1(1)从1,2,3,4,5中任取2个不同的数,事件A为“取到的2个数之和为偶数”,事件B为“取到的2个数均为偶数”,则P(B|A)=________.(2)如图所示,EFGH是以O为圆心,半径为1的圆的内接正方形,将一粒豆子随机地扔到该圆内,用A表示事件“豆子落在正方形EFGH内”,B表示事件“豆子落在扇形OHE(阴影部分)内”,则P(B|A)=________.练:某地空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是________.题型四由独立事件同时发生的概率求离散型随机变量的分布列(二项分布)例1在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中随机选3名歌手.(1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率;(2)X表示3号歌手得到观众甲、乙、丙的票数之和,“求X≥2”的事件概率.例2在一次数学考试中,第21题和第22题为选做题.规定每位考生必须且只须在其中选做一题.设4名学生选做每一道题的概率均为12.(1)求其中甲、乙两名学生选做同一道题的概率;(2)设这4名考生中选做第22题的学生个数为ξ,求ξ的概率分布.练习:一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X,求X的概率分布.(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?【误区解密】抽取问题如何区分超几何分布和二项分布?例:某学校10个学生的考试成绩如下:(≥98分为优秀)(1)10人中选3人,求至多1人优秀的概率(2)用10人的数据估计全级,从全级的学生中任选3人,用X表示优秀人数的个数,求X的分布列练:18、某市在“国际禁毒日”期间,连续若干天发布了“珍爱生命,远离毒品”的电视公益广告,期望让更多的市民知道毒品的危害性.禁毒志愿者为了了解这则广告的宣传效果,随机抽取了100名年龄阶段在10,20,20,30,30,40,40,50,50,60的市民进行问卷调查,由此得到样本频率分布直方图如图所示.(Ⅰ)求随机抽取的市民中年龄在30,40的人数;(Ⅱ)从不小于40岁的人中按年龄段分层抽样的方法随机抽取5从,求50,60年龄段抽取的人数;(Ⅲ)从(Ⅱ)中方式得到的5人中再抽到2人作为本次活动的获奖者,记X为年龄在50,60年龄段的人数,求X的分布列及数学期望.2、一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为(5,15],(15,25](25,35],(35,45],由此得到样本的重量频率分布直方图,如图.(Ⅰ)求a的值;(Ⅱ)根据样本数据,试估计盒子中小球重量的平均值;(Ⅲ)从盒子中随机抽取3个小球,其中重量在(5,15]内的小球个数为ξ,求ξ的分布列和数学期望及方差.