幂的乘方1人教版八年级上册数学教案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

14.1.2幂的乘方1.理解幂的乘方的运算性质,进一步体会和巩固幂的意义;通过推理得出幂的乘方的运算性质,并且掌握这个性质.(重点)2.掌握幂的乘方法则的推导过程并灵活应用.(难点)一、情境导入1.填空:(1)同底数幂相乘________不变,指数________;(2)a2×a3=________;10m×10n=________;(3)(-3)7×(-3)6=________;(4)a·a2·a3=________;(5)(23)2=2();(x4)5=x();(2100)3=2().2.计算(22)3;(24)3;(102)3.问题:(1)上述几道题目有什么共同特点?(2)观察计算结果,你能发现什么规律?(3)你能推导一下(am)n的结果吗?请试一试.二、合作探究探究点一:幂的乘方【类型一】直接应用幂的乘方法则进行计算计算:(1)(a3)4;(2)(xm-1)2;(3)[(24)3]3;(4)[(m-n)3]4.解析:直接运用(am)n=amn计算即可.解:(1)(a3)4=a3×4=a12;(2)(xm-1)2=x2(m-1)=x2m-2;(3)[(24)3]3=24×3×3=236;(4)[(m-n)3]4=(m-n)12.方法总结:运用幂的乘方法则进行计算时,一定不要将幂的乘方与同底数幂的乘法混淆,在幂的乘方中,底数可以是单项式,也可以是多项式.【类型二】含幂的乘方的混合运算计算:a2(-a)2(-a2)3+a10.解析:根据幂的乘方和同底数幂的乘法法则运算求解.解:a2(-a)2(-a2)3+a10=-a2·a2·a6+a10=-a10+a10=0.方法总结:先算幂的乘方,再算同底数幂的乘法,最后算加减,然后合并同类项.探究点二:幂的乘方法则的逆运算【类型一】运用幂的乘方法则比较数的大小请看下面的解题过程:“比较2100与375的大小,解:∵2100=(24)25,375=(33)25,又∵24=16,33=27,16<27,∴2100<375”.请你根据上面的解题过程,比较3100与560的大小,并总结本题的解题方法.解析:首先理解题意,然后可得3100=(35)20,560=(53)20,再比较35与53的大小,即可求得答案.解:∵3100=(35)20,560=(53)20,又∵35=243,53=125,243>125,即35>53,∴3100>560.方法总结:此题考查了幂的乘方的性质的应用.注意理解题意,根据题意得到3100=(35)20,560=(53)20是解此题的关键.【类型二】方程与幂的乘方的应用已知2x+5y-3=0,求4x·32y的值.解析:由2x+5y-3=0得2x+5y=3,再把4x·32y统一为底数为2的乘方的形式,最后根据同底数幂的乘法法则即可得到结果.解:∵2x+5y-3=0,∴2x+5y=3,∴4x·32y=22x·25y=22x+5y=23=8.方法总结:本题考查了幂的乘方的逆用及同底数幂的乘法,整体代入求解也比较关键.【类型三】根据幂的乘方的关系,求代数式的值已知2x=8y+1,9y=3x-9,则代数式13x+12y的值为________.解析:由2x=8y+1,9y=3x-9得2x=23(y+1),32y=3x-9,则x=3(y+1),2y=x-9,解得x=21,y=6,故代数式13x+12y=7+3=10.方法总结:根据幂的乘方与积的乘方公式转化得到x和y的方程组,求出x、y,再计算代数式.三、板书设计幂的乘方幂的乘方的运算公式:(am)n=amn(m,n为正整数).即幂的乘方,底数不变,指数相乘.幂的乘方公式的探究方式和前节类似,因此在教学中可以利用该优势展开教学,在探究过程中可以进一步发挥学生的主动性,尽可能地让学生在已有知识的基础上,通过自主探究,获得幂的乘方运算的感性认识,进而理解运算法则.

1 / 2
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功