第2课时用样本平均数估计总体平均数1.掌握用样本平均数去估计总体平均数的统计方法;(重点)2.在实际情景中会用样本平均数去估计总体平均数、体会样本代表性的重要意义.(难点)一、情境导入生活中的“小笑话”:一天,爸爸叫儿子去买一盒火柴.临出门前,爸爸嘱咐儿子要买能划燃的火柴.儿子拿着钱出门了,过了好一会儿,儿子才回到家.爸爸:“火柴能划燃吗?”儿子:“都能划燃.”爸爸:“你这么肯定?”儿子递过一盒划过的火柴,兴奋地说:“我每根都试过啦.”爸爸:“啊!……”今天我就学习用样本平均数估计总体平均数.二、合作探究探究点:用样本平均数估计总体平均数【类型一】结合扇形统计图和统计表来估计总体情况济南以“泉水”而闻名,为保护泉水,造福子孙后代,济南市积极开展“节水保泉”活动,宁宁利用课余时间对某小区300户居民的用水情况进行了统计,发现5月份各户居民的用水量比4月份有所下降,宁宁将5月份各户居民的节水量统计整理如下统计图表:节水量(米3)11.52.53户数508010070(1)扇形统计图中2.5米3对应扇形的圆心角为________度;(2)该小区300户居民5月份平均每户节约用水多少米3?解析:(1)首先计算出节水量2.5米3对应的户数所占百分比,再用360°×百分比即可;(2)根据加权平均数公式计算即可.解:(1)120(2)(50×1+80×1.5+2.5×100+3×70)÷300=2.1(米3).答:该小区300户居民5月份平均每户节约用水2.1米3.方法总结:本题主要考查了统计表,扇形统计图,平均数,关键是看懂统计图表,从统计图表中获取必要的信息,熟练掌握平均数的计算方法.【类型二】结合条形图来估计总体情况为宣传节约用水,小明随机调查了某小区部分家庭5月份的用水情况,并将收集的数据整理成如下统计图.(1)小明一共调查了多少户家庭?(2)求所调查家庭5月份用水量的平均数;(3)若该小区有400户居民,请你估计这个小区5月份的用水量.解析:(1)条形统计图上户数之和即为调查的家庭户数;(2)根据加权平均数的定义计算即可;(3)利用样本估计总体的方法,用“400×所调查的20户家庭的平均用水量”即可.解:(1)1+1+3+6+4+2+2+1=20(户),答:小明一共调查了20户家庭;(2)(1×1+1×2+3×3+4×6+5×4+6×2+7×2+8×1)÷20=4.5(吨),答:所调查家庭5月份用水量的平均数为4.5吨;(3)400×4.5=1800(吨),答:估计这个小区5月份的用水量为1800吨.方法总结:读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.【类型三】结合频数分布直方图来估计总体情况统计武汉园博会前20天日参观人数,得到如下频数分布表和频数分布直方图(部分未完成):武汉园博会前20天日参观人数的频数分布表组别(万人)组中值(万人)频数频率7.5~14.51150.2514.5~21.560.321.5~28.5250.328.5~35.5323(1)请补全频数分布表和频数分布直方图;(2)求出日参观人数不低于21.5万的天数和所占的百分比;(3)利用以上信息,试估计武汉园博会(会期247天)的参观总人数.解析:(1)根据表格的数据求出14.5~21.5小组的组中值,最后即可补全频数分布表和频数分布直方图;(2)根据表格知道日参观人数不低于21.5万的天数有两个小组,共9天,除以总人数即可求出所占的百分比;(3)利用每一组的组中值和每一组的频数可以求出武汉园博会(会期247天)的参观总人数.解:(1)14.5~21.5小组的组中值是(14.5+21.5)÷2=18,3÷20=0.15.武汉园博会前20天日参观人数的频数分布表:组别(万人)组中值(万人)频数频率7.5~14.51150.2514.5~21.51860.321.5~28.52560.328.5~35.53230.15(2)依题意得日参观人数不低于21.5万有6+3=9(天),所占百分比为9÷20=45%;(3)∵园博会前20天的平均每天参观人数约为11×5+18×6+25×6+32×320=40920=20.45(万人),∴武汉园博会(会期247天)的参观总人数约为20.45×247=5051.15(万人).答:武汉园博会(会期247天)的参观总人数约为5051.15万人.方法总结:本题考查运用样本估计总体的思想,解决问题的关键是读懂频数分布直方图和从统计图中获取有用信息.三、板书设计估计总体平均数当所要考察的对象很多或考察本身带有破坏性时,统计中常用样本平均数来估计总体的平均数.本节课以数学情景作为问题的依托,通过样本估计总体的问题变式,让学生将逐步掌握用样本平均数去估计总体平均数的统计方法,体会用样本估计总体的思想,感受样本代表性的意义,从而形成良好的数学思维习惯和应用意识,提高自己解决问题的能力,感受数学创造的乐趣,增进学好数学的信心,获得对数学较为全面的体验与理解.同时能够使所有的学生都能参与,在全体学生获得必要发展的前提下,不同的学生可以获得不同的体验.