易错专题等腰三角形中易漏解或多解的问题北师大版八年级下册数学

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

易错专题:等腰三角形中易漏解或多解的问题◆类型一求长度时忽略三边关系【易错1】1.一个等腰三角形的两边长分别是4,8,则它的周长为()A.12B.16C.20D.16或202.学习了三角形的有关内容后,张老师请同学们交流这样一个问题:“已知一个等腰三角形的周长是12,其中一条边长为3,求另两条边的长”.同学们经过片刻思考和交流后,小明同学举手说:“另两条边长为3,6或4.5,4.5.”你认为小明回答是否正确:________,理由是________________________.3.(2017·薛城区期末)若等腰三角形的三边长分别为x+1,2x+3,9,则x=________.4.已知等腰三角形ABC中,腰AC上的中线BD将三角形的周长分成9cm和15cm两部分,求这个三角形的腰长和底边长.◆类型二当腰或底不明求角度时没有分类讨论5.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为()A.100°B.40°C.40°或100°D.60°6.已知一个等腰三角形两内角的度数之比为1∶4,则这个等腰三角形顶角的度数为______________.7.(2017·普陀区模拟)我们把三角形中最大内角与最小内角的度数差称为该三角形的“内角正度值”.如果等腰三角形的“内角正度值”为45°,那么该等腰三角形的顶角度数为________.8.有一三角形纸片ABC,∠A=80°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两纸片均为等腰三角形,则∠C的度数可以是____________________.9.★一个大等腰三角形能被分割成两个小等腰三角形,试求这个大等腰三角形顶角的度数.◆类型三三角形的形状不明与高结合时没有分类讨论10.(2017·绥化中考)在等腰△ABC中,AD⊥BC交BC于点D.若AD=12BC,则△ABC的顶角度数为______________.11.已知等腰三角形一腰上的高与另一腰的夹角的度数为20°,求顶角的度数.【易错3】◆类型四一边确定,另两边不定,确定三角形的个数时漏解【易错4】12.如图,点A的坐标为(2,2),若点P在坐标轴上,且△APO为等腰三角形,则满足条件的点P有()A.4个B.6个C.7个D.8个第12题图第13题图13.如图,在4×5的点阵图中,每两个横向和纵向相邻阵点的距离均为1,该点阵图中已有两个阵点分别标为A,B,请在此点阵图中找一个阵点C,使得以点A,B,C为顶点的三角形是等腰三角形,则符合条件的C点有________个.14.如图是6×6的正方形网格,点A,B均在正方形格点上,在网格中的格点上找一点C,使△ABC为等腰三角形,简要写出步骤并标出点C的位置.参考答案与解析1.C2.不正确没考虑三角形的三边关系3.34.解:设腰长为xcm,分两种情况考虑:①腰长与腰长的一半是9cm时,即x+12x=9,解得x=6,∴底边长为15-12×6=12(cm).∵6+6=12,∴6cm,6cm,12cm不能组成三角形;②腰长与腰长的一半是15cm时,即x+12x=15,解得x=10,∴底边长为9-12×10=4(cm),∴三角形的三边长为10cm,10cm,4cm,能组成三角形.综上所述,三角形的腰长为10cm,底边长为4cm.5.C6.120°或20°7.30°或90°解析:设最小角的度数为x,则最大角的度数为x+45°.当最小角是顶角时,则x+x+45°+x+45°=180°,解得x=30°,此时三角形顶角的度数为30°.当最大角为顶角时,则x+x+45°+x=180°,解得x=45°,此时三角形顶角的度数为90°.综上所述,等腰三角形的顶角为30°或90°.8.40°或25°或10°解析:由题意知△ABD与△DBC均为等腰三角形,对于△ABD有三种情况:①AB=BD,则∠ADB=∠A=80°,∴∠BDC=180°-∠ADB=100°,∠C=(180°-∠BDC)÷2=40°;②AB=AD,则∠ADB=(180°-∠A)÷2=50°,∴∠BDC=180°-∠ADB=130°,∠C=(180°-∠BDC)÷2=25°;③AD=BD,则∠ABD=∠A=80°,∴∠BDC=∠ABD+∠A=160°,∠C=(180°-∠BDC)÷2=10°.综上所述,∠C的度数可以是40°或25°或10°.9.解:分四种情况讨论:(1)如图①,△ABC中,AB=AC,BD=AD,AC=CD,则∠B=∠C=∠BAD,∠CDA=∠CAD,∴∠CDA=∠B+∠BAD=2∠B,∴∠BAC=∠CAD+∠BAD=∠CDA+∠BAD=3∠B.∵∠BAC+∠B+∠C=180°,∴5∠B=180°,∴∠B=36°,∴∠BAC=108°;(2)如图②,△ABC中,AB=AC,AD=BD=CD,则∠B=∠C=∠DAC=∠DAB,∴∠BAC=2∠B.∵∠BAC+∠B+∠C=180°,∴4∠B=180°,∴∠B=45°,∴∠BAC=90°;(3)如图③,△ABC中,AB=AC,BD=AD=BC,则∠ABC=∠C,∠A=∠ABD,∠BDC=∠C,∴∠BDC=∠A+∠DBA=2∠A,∴∠ABC=∠C=∠BDC=2∠A.∵∠A+∠ABC+∠C=180°,∴5∠A=180°,∴∠A=36°.(4)如图④,△ABC中,AB=AC,BD=AD,CD=BC.设∠A=x,∵AD=BD,∴∠DBA=∠A=x.∵AB=AC,∴∠ABC=180°-x2,∴∠DBC=∠ABC-∠ABD=180°-x2-x.∵CD=BC,∴∠BDC=∠A+∠ABD=2x=∠DBC=180°-x2-x,∴x=180°7,即∠A=180°7.综上所述,这个大等腰三角形顶角的度数为108°或90°或36°或180°7.10.30°或150°或90°解析:(1)当BC为腰时,∵AD⊥BC,AD=12BC,∴∠ACD=30°.如图①,当AD在△ABC内部时,顶角∠C=30°.如图②,当AD在△ABC外部时,顶角∠ACB=180°-30°=150°;(2)当BC为底时,如图③.∵AD⊥BC,AD=12BC,∴AD=BD=CD,∴∠B=∠BAD,∠C=∠CAD,∴∠BAD+∠CAD=12×180°=90°,即顶角∠BAC=90°.综上所述,等腰三角形ABC的顶角度数为30°或150°或90°.11.解:此题要分情况讨论:当等腰三角形的顶角是钝角时,如图①所示,腰上的高在三角形外部.由题意得顶角∠ACB=∠D+∠DAC=90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,如图②所示,故顶角∠A=90°-∠ABD=90°-20°=70°.综上所述,顶角的度数为110°或70°.12.D解析:∵点A的坐标为(2,2),∴△OAP的边OA=22,这条边可能是底边也可能是腰.①当OA是底边时,点P是OA的垂直平分线与坐标轴的交点,交点的坐标是(2,0)和(0,2);②当OA是腰时,当O是顶角顶点时,以O为圆心,以OA为半径作圆,与坐标轴的交点坐标是(22,0),(-22,0),(0,22),(0,-22);③当A是顶角顶点时,以A为圆心,以AO为半径作圆,与坐标轴的交点坐标是(4,0),(0,4).综上可知满足条件的点P共有8个,故选D.13.5解析:如图,分别以AB为腰、底找等腰三角形,故符合条件的C点有5个.第13题图第14题图14.解:如图,(1)当BA=BC时,符合条件的有C1,C2;(2)当AB=AC时,符合条件的有C3,C4;(3)当CA=CB时,符合条件的有C5,C6,C7,C8,C9,C10.综上所述,符合条件的C点有10个.

1 / 5
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功