1.1菱形的性质与判定第一章特殊平行四边形导入新课讲授新课当堂练习课堂小结第1课时菱形的性质学习目标1.了解菱形的概念及其与平行四边形的关系.2.探索并证明菱形的性质定理.(重点)3.应用菱形的性质定理解决相关计算或证明问题.(难点)导入新课情景引入欣赏下面图片,图片中框出的图形是你熟悉的吗?欣赏视频,前面的图片中出现的图形是平行四边形,和视频中菱形一致,那么什么是菱形呢?这节课让我们一起来学习吧.讲授新课菱形的性质一思考如果从边的角度,将平行四边形特殊化,内角大小保持不变仅改变边的长度让它有一组邻边相等,这个特殊的平行四边形叫什么呢?平行四边形菱形邻边相等定义:有一组邻边相等的平行四边形.菱形是特殊的平行四边形.平行四边形不一定是菱形.归纳总结活动1如何利用折纸、剪切的方法,既快又准确地剪出一个菱形的纸片?观看下面视频:活动2在自己剪出的菱形上画出两条折痕,折叠手中的图形(如图),并回答以下问题:问题1菱形是轴对称图形吗?如果是,指出它的对称轴.是,两条对角线所在直线都是它的对称轴.问题2根据上面折叠过程,猜想菱形的四边在数量上有什么关系?菱形的两对角线有什么关系?猜想1菱形的四条边都相等.猜想2菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.已知:如图,在平行四边形ABCD中,AB=AD,对角线AC与BD相交于点O.求证:(1)AB=BC=CD=AD;(2)AC⊥BD;∠DAC=∠BAC,∠DCA=∠BCA,∠ADB=∠CDB,∠ABD=∠CBD.证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AD=BC(平行四边形的对边相等).又∵AB=AD,∴AB=BC=CD=AD.ABCOD证一证(2)∵AB=AD,∴△ABD是等腰三角形.又∵四边形ABCD是平行四边形,∴OB=OD(平行四边形的对角线互相平分).在等腰三角形ABD中,∵OB=OD,∴AO⊥BD,AO平分∠BAD,即AC⊥BD,∠DAC=∠BAC.同理可证∠DCA=∠BCA,∠ADB=∠CDB,∠ABD=∠CBD.ABCOD菱形是特殊的平行四边形,它除具有平行四边形的所有性质外,还有平行四边形所没有的特殊性质.对称性:是轴对称图形.边:四条边都相等.对角线:互相垂直,且每条对角线平分一组对角.角:对角相等.边:对边平行且相等.对角线:相互平分.菱形的特殊性质平行四边形的性质归纳总结例1如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=12cm,AC=6cm,求菱形的周长.解:∵四边形ABCD是菱形,∴AC⊥BD,AO=AC,BO=BD.∵AC=6cm,BD=12cm,∴AO=3cm,BO=6cm.在Rt△ABO中,由勾股定理得∴菱形的周长=4AB=4×3=12(cm).121222223635cm.ABAOBO55典例精析例2如图,在菱形ABCD中,CE⊥AB于点E,CF⊥AD于点F,求证:AE=AF.证明:连接AC.∵四边形ABCD是菱形,∴AC平分∠BAD,即∠BAC=∠DAC.∵CE⊥AB,CF⊥AD,∴∠AEC=∠AFC=90°.又∵AC=AC,∴△ACE≌△ACF.∴AE=AF.菱形是轴对称图形,它的两条对角线所在的直线都是它的对称轴,每条对角线平分一组对角.归纳例3如图,E为菱形ABCD边BC上一点,且AB=AE,AE交BD于O,且∠DAE=2∠BAE,求证:OA=EB.ABCDOE证明:∵四边形ABCD为菱形,∴AD∥BC,AD=BA,∠ABC=∠ADC=2∠ADB,∴∠DAE=∠AEB,∵AB=AE,∴∠ABC=∠AEB,∴∠ABC=∠DAE,∵∠DAE=2∠BAE,∴∠BAE=∠ADB.又∵AD=BA,∴△AOD≌△BEA,∴AO=BE.1.如图,在菱形ABCD中,已知∠A=60°,AB=5,则△ABD的周长是()A.10B.12C.15D.20C练一练2.如图,菱形ABCD的周长为48cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长为_______.第1题图第2题图6cm1.菱形具有而一般平行四边形不具有的性质是()A.对角相等B.对边相等C.对角线互相垂直D.对角线相等C2.如图,在菱形ABCD中,AC=8,BD=6,则△ABD的周长等于()A.18B.16C.15D.14当堂练习B3.根据下图填一填:(1)已知菱形ABCD的周长是12cm,那么它的边长是______.(2)在菱形ABCD中,∠ABC=120°,则∠BAC=_______.(3)菱形ABCD的两条对角线长分别为6cm和8cm,则菱形的边长是_______.3cm30°ABCOD5cm(4)菱形的一个内角为120°,平分这个内角的对角线长为11cm,菱形的周长为______.44cmABCOD4.如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.求证:∠AFD=∠CBE.证明:∵四边形ABCD是菱形,∴CB=CD,CA平分∠BCD.∴∠BCE=∠DCE.又CE=CE,∴△BCE≌△DCE(SAS).∴∠CBE=∠CDE.∵在菱形ABCD中,AB∥CD,∴∠AFD=∠EDC.∴∠AFD=∠CBE.ADCBFE课堂小结菱形的性质菱形的性质有关计算边周长=边长的四倍角对角线1.两组对边平行且相等;2.四条边相等两组对角分别相等,邻角互补邻角互补1.两条对角线互相垂直平分;2.每一条对角线平分一组对角见《学练优》本课时练习课后作业更多精彩内容,微信扫描二维码获取扫描二维码获取更多资源