解题技巧专题利用一次函数解决与不等式应用相关的方案问题北师大版八年级下册数学

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

解题技巧专题:利用一次函数解决与不等式应用相关的方案问题1.(2017·恩施中考)为积极响应政府提出的“绿色发展·低碳出行”号召,某社区决定购置一批共享单车.经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.(1)求男式单车和女式单车的单价;(2)该社区要求男式单车比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?2.(2017·衢州中考)“五一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据图中信息,解答下列问题.(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,y1,y2与x的函数关系如图所示,根据图象分别求出y1,y2关于x的函数表达式;(2)请你通过计算帮助小明选择哪个公司合算.3.★某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A,B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价均为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为yA(元),在B超市购买羽毛球拍和羽毛球的费用为yB(元).请解答下列问题:(1)分别写出yA和yB与x之间的关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.参考答案与解析1.解:(1)设男式单车x元/辆,女式单车y元/辆,根据题意得3x=4y,5x+4y=16000,解得x=2000,y=1500.答:男式单车2000元/辆,女式单车1500元/辆.(2)设购置女式单车m辆,则购置男式单车(m+4)辆,根据题意得m+m+4≥22,2000(m+4)+1500m≤50000,解得9≤m≤12.∵m为整数,∴m的值可以是9,10,11,12,即该社区有四种购置方案.设购置总费用为W元,则W=2000(m+4)+1500m=3500m+8000.∵W随m的增大而增大,∴当m=9时,W取得最小值,最小值为3500×9+8000=39500.答:该社区共有4种购置方案,其中购置男式单车13辆、女式单车9辆时所需总费用最低,最低费用为39500元.2.解:(1)设y1=k1x+80,把点(1,95)代入得95=k1+80,解得k1=15,∴y1=15x+80(x≥0).设y2=k2x,把(1,30)代入得k2=30,∴y2=30x(x≥0).(2)当y1=y2时,15x+80=30x,解得x=163.当y1>y2时,15x+80>30x,解得x<163.当y1<y2时,15x+80<30x,解得x>163.∴当租车时间为163小时时,选择甲、乙公司一样合算;当租车时间小于163小时时,选择乙公司合算;当租车时间大于163小时时,选择甲公司合算.3.解:(1)yA=(30×10+3×10x)×90%=27x+270,yB=30×10+3(10x-2×10)=30x+240.(2)当yA=yB时,27x+270=30x+240,解得x=10;当yA>yB时,27x+270>30x+240,解得x<10;当yA<yB时,27x+270<30x+240,解得x>10.∴当2≤x<10时,到B超市购买划算;当x=10时,两家超市都一样;当x>10时,到A超市购买划算.(3)∵x=15>10,∴①选择在A超市购买,yA=27×15+270=675(元);②可先在B超市购买10副羽毛球拍,送20个羽毛球,后在A超市购买剩下的羽毛球(10×15-20)=130(个),则共需费用为10×30+130×3×0.9=651(元).∵651<675,∴最省钱的购买方案是先在B超市购买10副羽毛球拍,后在A超市购买130个羽毛球.

1 / 3
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功