比例式、等积式的常见证明方法比例式、等积式的证明是初中几何非常常见的题型,同时也是令许多学生头疼的一种题型,特别是在一些图形复杂、线段较多的题目中,往往令人眼花瞭乱无从下手.等积式的证明有没有技巧呢?其实只要我们冷静分析,我们将会发现许多等积式的证明也是有规律可循的。类型一:找线段对应的三角形,利用相似证明如图,□ABCD中,E是AB延长线上的一点,DE交BC于F.求证:DCCFAEAD.EDABCF如图,□ABCD中,E是AB延长线上的一点,DE交BC于F.求证:DCCFAEAD.EDABCF证明:∵四边形ABCD是平行四边形∴AB∥CD,∠A=∠C∴∠CDF=∠E∴△DCF∽△EAD∴DCCFAEAD如图,△ABC中,∠BAC=90°,M为BC的中点,DM⊥BC交CA的延长线于D,交AB于E,求证:AM2=MD·ME.EDBCAM证明:∵∠BAC=90°,M为BC的中点∴MA=MB∴∠B=∠1∵∠BAC=90°,DM⊥BC∴∠D=∠B=90°-∠C∴∠1=∠D又∵∠2=∠2∴△EAM∽△ADM∴AM∶MD=ME∶AM∴AM2=MD·ME21方法总结证明线段比例式或等积式时,通常先找所涉及的线段位于哪两个三角形中,再证明所属的两个三角形相似。类型二:利用等线段代换如图,△ABC中,AB=AC,AD是中线,P是AD上一点,过C作CF∥AB,延长BP交AC于E,交CF于F.求证:BP2=PE·PF.PEDBCAF如图,△ABC中,AB=AC,AD是中线,P是AD上一点,过C作CF∥AB,延长BP交AC于E,交CF于F.求证:BP2=PE·PF.PEDBCAF证明:连接PC∵AB=AC,AD是中线∴AD垂直平分BC∴BP=CP∴∠1=∠2∵AB=AC∴∠1+∠3=∠2+∠4∴∠3=∠4∵CF∥AB∴∠3=∠F∴∠4=∠F而∠CPE是△CPE和△FPC的公共角∴△CPE∽△FPC∴PE∶PC=PC∶PF∴PC2=PE·PF∴BP2=PE·PF4321方法总结运用类型一的方法证明线段的比例式或等积式时,如果相关的线段不在某两个三角形中,则需要将其中的某条线段用与之相等的另一条线段替换,再按类型一的方法证明.类型三:找中间比利用等积式代换如图,在△ABC中,已知∠BAC=90°,AD⊥BC于D,E为直角边AC的中点,过D、E作直线交AB的延长线于F.求证:AB·AF=AC·DF.FEDBCA321如图,在△ABC中,已知∠A=90°,AD⊥BC于D,E为直角边AC的中点,过D、E作直线交AB的延长线于F.求证:AB·AF=AC·DF.FEDBCA证明:∵∠A=90°,AD⊥BC∴∠1=∠C=90°-∠ABC而∠BDA=∠ADC=90°∴△ABD∽△CAD∴ABBDACAD∵AD⊥BC,E为直角边AC中点∴DE=EC∴∠3=∠C又∵∠3=∠2,∠1=∠C∴∠1=∠2而∠F是△FBD与△FDA的公共角∴△FBD∽△FDA∴DFBDAFAD∴ABDFACAF∴AB·AF=AC·DF.321方法总结证明线段比例式或等积式时,如果按类型一、类型二的方法仍无法证明,可以尝试将等积式化为比例式,结合图形找到能够与比例式中的两个比分别相等的中间比,从而证明所求证的结果成立.变式题更多精彩内容,微信扫描二维码获取扫描二维码获取更多资源