第2课时用配方法求解较复杂的一元二次方程1.会用配方法解二次项系数不为1的一元二次方程;(重点)2.能够熟练地、灵活地应用配方法解一元二次方程.(难点)一、情景导入某辆汽车在公路上行驶,它行驶的路程s(m)和时间t(s)之间的关系为:s=10t+3t2,那么行驶200m需要多长时间?二、合作探究探究点一:用配方法解二次项系数不为1的一元二次方程用配方法解方程:-12x2+52x-54=0.解析:先把方程二次项的系数化为1,再配方成(x+m)2=n(n≥0)的形式,最后开平方即可.解:方程两边同除以-12,得x2-5x+52=0.移项,得x2-5x=-52.配方,得x2-5x+(-52)2=-52+(-52)2,即(x-52)2=154.两边开平方,得x-52=±152.即x-52=152或x-52=-152.所以x1=5+152,x2=5-152.易错提醒:用配方法解一元二次方程时,易出现以下错误:(1)方程一边忘记加常数项;(2)忘记将二次项系数化为1;(3)在二次项系数化为1时,常数项忘记除以二次项系数;(4)配方时,只在一边加上一次项系数一半的平方.探究点二:配方法的应用【类型一】利用配方法求代数式的值已知a2-3a+b2-b2+3716=0,求a-4b的值.解析:观察方程可以知道,原方程可以用配方法转化为两个数的平方和等于0的形式,得到这两个数都为0,从而可求出a,b的值,再代入代数式计算即可.解:原等式可以写成:(a-32)2+(b-14)2=0.∴a-32=0,b-14=0,解得a=32,b=14.∴a-4b=32-4×14=-12.方法总结:这类题目主要是配方法和非负数性质的综合应用,通过配方把等式转化为两个数的平方和等于0的形式是解题的关键.【类型二】利用配方法求代数式的最值或判定代数式的值与0的关系请用配方法说明:不论x取何值,代数式x2-5x+7的值恒为正.解析:本题是要运用配方法将代数式化为一个平方式加上一个常数的形式.解:∵x2-5x+7=x2-5x+(52)2+7-(52)2=(x-52)2+34,而(x-52)2≥0,∴(x-52)2+34≥34.∴代数式x2-5x+7的值恒为正.方法总结:对于代数式是一个关于x的二次式且含有一次项,在求它的最值时,常常采用配方法,将原代数式变形为一个平方式加一个常数的形式,根据一个数的平方是一个非负数,从而就可以求出原代数式的最值.【类型三】利用配方法解决一些简单的实际问题如图,一块矩形土地,长是48m,宽是24m,现要在它的中央划一块矩形草地,四周铺上花砖路,路面宽都相等,草地面积占矩形土地面积的59,求花砖路面的宽.解析:若设花砖路面宽为xm,则草地的长与宽分别为(48-2x)m及(24-2x)m,根据等量关系:矩形草地的面积=59×矩形土地的面积,即可列一元二次方程求解.解:设花砖路面的宽为xm.根据题意,得(48-2x)(24-2x)=59×48×24.整理,得x2-36x=-128.配方,得x2-36x+(-18)2=-128+(-18)2,即(x-18)2=196.两边开平方,得x-18=±14.即x-18=14,或x-18=-14.所以x1=32(不合题意,舍去),x2=4.故花砖路面的宽为4m.方法总结:列一元二次方程解决实际问题时,一定要检验方程的根,这些根虽然满足所列的一元二次方程,但未必符合实际问题,因此,求出一元二次方程的解之后,要把不符合实际问题的解舍去.三、板书设计用配方法解二次项系数不为1的一元二次方程的步骤:(1)把原方程化为一般形式;(2)二次项系数化为1,方程两边都除以二次项系数;(3)移项,把常数项移到右边,使方程左边只含二次项和一次项;(4)配方,方程两边都加上一次项系数一半的平方;(5)用直接开平方法解方程.通过对比用配方法解二次项系数是1的一元二次方程,发现解二次项系数不是1的一元二次方程的方法,经历从简单到复杂的过程,对配方法全面认识.培养学生发现问题的能力,通过学生亲自解方程的感受与经验,总结成文,帮助学生养成系统整理知识的学习习惯.