海量资源尽在星星文库:*3.3垂径定理学习目标:经历探索圆的对称性及相关性质的过程.理解圆的对称性及相关知识.理解并掌握垂径定理.学习重点:垂径定理及其应用.学习难点:垂径定理及其应用.学习方法:指导探索与自主探索相结合。学习过程:一、举例:【例1】判断正误:(1)直径是圆的对称轴.(2)平分弦的直径垂直于弦.【例2】若⊙O的半径为5,弦AB长为8,求拱高.【例3】如图,⊙O的直径AB和弦CD相交于点E,已知AE=6cm,EB=2cm,∠CEA=30°,求CD的长.【例4】如图,在⊙O中,弦AB=8cm,OC⊥AB于C,OC=3cm,求⊙O的半径长.【例5】如图1,AB是⊙O的直径,CD是弦,AE⊥CD,垂足为E,BF⊥CD,垂足为F,EC和DF相等吗?说明理由.如图2,若直线EF平移到与直径AB相交于点P(P不与A、B重合),在其他条件不变的情况下,原结论是否改变?为什么?如图3,当EF∥AB时,情况又怎样?如图4,CD为弦,EC⊥CD,FD⊥CD,EC、FD分别交直径AB于E、F两点,你能说明AE和BF为什么相等吗?海量资源尽在星星文库:二、课内练习:1、判断:⑴垂直于弦的直线平分这条弦,并且平分弦所对的两条弧.()⑵平分弦所对的一条弧的直径一定平分这条弦所对的另一条弧.()⑶经过弦的中点的直径一定垂直于弦.()⑷圆的两条弦所夹的弧相等,则这两条弦平行.()⑸弦的垂直平分线一定平分这条弦所对的弧.()2、已知:如图,⊙O中,弦AB∥CD,AB<CD,直径MN⊥AB,垂足为E,交弦CD于点F.图中相等的线段有.图中相等的劣弧有.3、已知:如图,⊙O中,AB为弦,C为AB的中点,OC交AB于D,AB=6cm,CD=1cm.求⊙O的半径OA.4.如图,圆O与矩形ABCD交于E、F、G、H,EF=10,HG=6,AH=4.求BE的长.5.储油罐的截面如图3-2-12所示,装入一些油后,若油面宽AB=600mm,求油的最大深度.6.“五段彩虹展翅飞”,我省利用国债资金修建的,横跨南渡江的琼州大桥(如图3-2-16)已于今年5月12日正式通车,该桥的两边均有五个红色的圆拱,如图(1).最高的圆拱的跨度为110米,拱高为22米,如图(2)那么这个圆拱所在圆的直径为米.三、课后练习:1、已知,如图在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C、D两点,求证:AC=BD海量资源尽在星星文库:、已知AB、CD为⊙O的弦,且AB⊥CD,AB将CD分成3cm和7cm两部分,求:圆心O到弦AB的距离3、已知:⊙O弦AB∥CD求证:BDAC4、已知:⊙O半径为6cm,弦AB与直径CD垂直,且将CD分成1∶3两部分,求:弦AB的长.5、已知:AB为⊙O的直径,CD为弦,CE⊥CD交AB于EDF⊥CD交AB于F求证:AE=BF6、已知:△ABC内接于⊙O,边AB过圆心O,OE是BC的垂直平分线,交⊙O于E、D两点,求证,BC21AE7、已知:AB为⊙O的直径,CD是弦,BE⊥CD于E,AF⊥CD于F,连结OE,OF求证:⑴OE=OF⑵CE=DF8、在⊙O中,弦AB∥EF,连结OE、OF交AB于C、D求证:AC=DB海量资源尽在星星文库:、已知如图等腰三角形ABC中,AB=AC,半径OB=5cm,圆心O到BC的距离为3cm,求ABC的长10、已知:⊙O与⊙O'相交于P、Q,过P点作直线交⊙O于A,交⊙O'于B使OO'与AB平行求证:AB=2OO'11、已知:AB为⊙O的直径,CD为弦,AE⊥CD于E,BF⊥CD于F求证:EC=DF