4.1认识三角形第2课时三角形的三边关系一、学习目标:1、通过观察、操作、想象、推理、交流等活动,发掌空间观念、推理能力和有条理地表达能力;2、结合具体实例,进一步认识三角形的概念及其基本要素,掌握三角形三边关系:“三角形任意两边之和大于第三边;三角形任意两边之差小于第三边”。二、学习重点:三角形三边关系:“三角形任意两边之和大于第三边;三角形任意两边之差小于第三边”。三、学习难点:灵活运用三角形三边关系解决一些实际问题。四、学习设计(一)预习准备(1)预习(2)思考①什么叫三角形?②三角形的基本构造③三角形的三边关系(3)预习作业:如图,已知AD⊥BC于点D,DE⊥AB于点E,点F是AE的中点,则图中有个三角形,个直角三角形,个锐角三角形,个钝角三角形;以B为内角的三角形有个,它们分别是;以BE为一边的三角形是。(二)学习过程1、三角形的有关概念(1)三角形的定义:由不在上的三条线段首尾相连所组成的图形。(2)三角形的基本构造:①组成三角形的三条线段叫做三角形的②两条边相接的点叫做三角形的③相邻两边组成的角叫做三角形的2、三角形的三边关系:新课标xkb1.com(1)三角形任意两边之和第三边(2)三角形任意两边之差第三边例1图中共有几个三角形?并把它们用符号表示出来。例2下面各组数分别表示三条线段的长度,试判断以它们为边是否能组成三角形。(1)1;4;5(2)3;3;5(3)3x;5x;7x(x为正数)(4)三条线段长度之比为4:7:6变式训练:有下列长度的三条线段能否构成三角形?为什么?(1)3;4;8(2)5;6;11(3)5;7;10(4)4;4;9(5)5;5;5例3小明要制作一个三角形铁丝架,已知有两根铁丝长度分别是3cm,5cm(1)他该如何选择第三根铁丝?你能帮助小明确定它的长度或范围吗?FEDCBAGFEDCBA(2)如果要求第三根铁丝的长度是整数,那么小明有几种选择?变式训练:1、已知两条线段的长为5cm和8cm,要订成一个三角形,试求:(1)第三条线段的长度范围;(2)若第三条线段的长度为奇数,求此时三角形的周长。xkb1.com2、已知等腰三角形中,有两边长为3和7,求此等腰三角形的底边和腰长例4如图所示,在小河的同侧有A,B,C三个村庄,图中的线段表示道路,某邮递员从A村送信到B村,总是走经过C村的道路,不走经过D村的道路,这是为什么呢?请利用你所学的数学知识加以证明。拓展:1、若设,,abc是△ABC的三边,则abcabc=2、已知,,abc是△ABC的三边,2,5ab,且三角形的周长是偶数,(1)求c的值;(2)判断△ABC的形状。回顾小结:EDCBA掌握三角形三边关系:“三角形任意两边之和大于第三边;三角形任意两边之差小于第三边”。