第2课时相似三角形的周长和面积之比北师大版九年级上册数学教案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第2课时相似三角形的周长和面积之比●教学目标(一)教学知识点1.相似三角形的周长比,面积比与相似比的关系.2.相似三角形的周长比,面积比在实际中的应用.(二)能力训练要求1.经历探索相似三角形的性质的过程,培养学生的探索能力.2.利用相似三角形的性质解决实际问题训练学生的运用能力.(三)情感与价值观要求1.学生通过交流、归纳,总结相似三角形的周长比、面积比与相似比的关系,体会知识迁移、温故知新的好处.2.运用相似多边形的周长比,面积比解决实际问题,增强学生对知识的应用意识.●教学重点1.相似三角形的周长比、面积比与相似比关系的推导.2.运用相似三角形的比例关系解决实际问题.●教学难点相似三角形周长比、面积比与相似比的关系的推导及运用.●教学方法引导启发式通过温故知新,知识迁移,引导学生发现新的结论,通过比较、分析,应用获得的知识达到理解并掌握的目的.●教具准备投影片两张第一张:(记作§4.7.2A)第二张:(记作§4.7.2B)●教学过程Ⅰ.创设问题情境,引入新课[师](拿大小不同的两个等腰直角三角形三角板).我手中拿着两名同学的两个大小不同的三角板.请同学们观察其形状,并请两位同学来量一量它们的边长分别是多少.然后告诉大家数据.(让学生把数据写在黑板上)[师]同学们通过观察和计算来回答下列问题.1.两三角形是否相似.2.两三角形的周长比和面积比分别是多少?它们与相似比的关系如何?与同伴交流.[生]因为两三角形都是等腰直角三角形,其对应角分别相等,所以它们是相似三角形.周长比与相似比相等,而面积比与相似比却不相等.[师]能不能找到面积比与相似比的量化关系呢?[生]面积比与相似比的平方相等.[师]老师为你的重大发现感到骄傲.但这是特殊三角形,对一般三角形、多边形,我们发现的结论成立吗?这正是我们本节课要解决的问题.Ⅱ.新课讲解1.做一做投影片(§4.7.2A)在上图中,△ABC∽△A′B′C′,相似比为43.(1)请你写出图中所有成比例的线段.(2)△ABC与△A′B′C′的周长比是多少?你是怎么做的?(3)△ABC的面积如何表示?△A′B′C′的面积呢?△ABC与△A′B′C′的面积比是多少?与同伴交流.[生](1)∵△ABC∽△A′B′C′∴BAAB=CBBC=CAAC=DCCD=DBBD=DAAD=43.(2)43的周长的周长CBAABC.∵BAAB=CBBC=CAAC=43.∴CACBBAACBCABllCBAABC=CACBBACACBBA434343=43)(43CACBBACACBBA.(3)S△ABC=21AB·CD.S△A′B′C′=21A′B′·C′D′.∴2)43(2121DCCDBAABDCBACDABSSCBAABC.2.想一想如果△ABC∽△A′B′C′,相似比为k,那么△ABC与△A′B′C′的周长比和面积比分别是多少?[生]由上可知若△ABC∽△A′B′C′,相似比为k,那么△ABC与△A′B′C′的周长比为k,面积比为k2.3.议一议投影片(§4.7.2B).如图,四边形A1B1C1D1∽四边形A2B2C2D2,相似比为k.(1)四边形A1B1C1D1与四边形A2B2C2D2的周长比是多少?(2)连接相应的对角线A1C1,A2C2,所得的△A1B1C1与△A2B2C2相似吗?△A1C1D1与△A2C2D2呢?如果相似,它们的相似各是多少?为什么?(3)设△A1B1C1,△A1C1D1,△A2B2C2,△A2C2D2的面积分别是,111CBAS222222111,,DCACBADCASSS那么222111222111DCADCACBACBASSSS各是多少?(4)四边形A1B1C1D1与四边形A2B2C2D2的面积比是多少?如果把四边形换成五边形,那么结论又如何呢?[生]解:(1)∵四边形A1B1C1D1∽四边形A2B2C2D2.相似比为k.(2)△A1B1C1∽△A2B2C2、△A1C1D1∽△A2C2D2,且相似比都为k.∵四边形A1B1C1D1∽四边形A2B2C2D2∴2211221122112211DADADCDCCBCBBABA∠D1A1B1=∠D2A2B2,∠B1=∠B2.∠B1C1D1=∠B2C2D2,∠D1=∠D2.在△A1B1C1与△A2B2C2中∵22112211CBCBBABA∠B1=∠B2.∴△A1B1C1∽△A2B2C2.∴2211BABA=k.同理可知,△A1C1D1∽△A2C2D2,且相似比为k.(3)∵△A1B1C1∽△A2B2C2,△A1C1D1∽△A2C2D2.22222222222222)(kSSSSkDCACBADCACBA照此方法,将四边形换成五边形,那么也有相同的结论.由此可知:相似多边形的周长比等于相似比,面积比等于相似比的平方.Ⅲ.随堂练习完成教材随堂练习Ⅳ.课时小结本节课我们重点研究了相似三角形的对应线段(高、中线、角平分线)的比,周长比都等于相似比,面积比等于相似比的平方.Ⅴ.课后作业习题4.12●板书设计4.7相似三角形的性质第2课时相似三角形的周长和面积之比一、1.做一做2.想一想3.议一议二、课堂练习三、课时小结四、课后作业

1 / 4
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功