3简单的轴对称图形导入新课讲授新课当堂练习课堂小结第五章生活中的轴对称第1课时等腰三角形的性质学习目标1.理解并掌握等腰三角形的性质;(重点)2.探索并掌握等腰三角形的轴对称性及其相关性质,能初步运用其解决有关问题.(难点).观察下列各种图形,判断是不是轴对称图形,能找出对称轴吗?复习巩固导入新课情境导入观察下列图片,它们有什么共同的特征?等腰三角形讲授新课等腰三角形的性质如图,在△ABC中,AB=AC,则三角形为等腰三角形.它的各部分名称分别是什么?ABC(1)相等的两条边都叫腰;腰腰底边(2)另一边叫底边;顶角底角底角(3)两腰的夹角∠A叫顶角;(4)腰与底边夹角∠B、∠C叫底角.剪一剪:把一张长方形的纸按图中的红线对折,并剪去阴影部分(一个直角三角形),再把得到的直角三角形展开,得到的三角形ABC有什么特点?互动探究ABCAB=AC等腰三角形折一折:△ABC是轴对称图形吗?它的对称轴是什么?ACDB折痕所在的直线是它的对称轴.等腰三角形是轴对称图形.找一找:把剪出的等腰三角形ABC沿折痕对折,找出其中重合的线段和角.重合的线段重合的角ACBDAB与ACBD与CDAD与AD∠B与∠C.∠BAD与∠CAD∠ADB与∠ADC猜一猜:由这些重合的角,你能发现等腰三角形的性质吗?说一说你的猜想.(1)等腰三角形是轴对称图形.(2)∠B=∠C.(3)∠BAD=∠CAD,AD为顶角的平分线.(4)∠ADB=∠ADC=90°,AD为底边上的高.(5)BD=CD,AD为底边上的中线.ABCD现象ABCD解:在ΔABC中,∵AD是角平分线,∴∠BAD=∠CAD.在ΔABD和ΔACD中,∵AB=AC,∠BAD=∠CAD,AD=AD,∴ΔABD≌ΔACD.∴BD=CD,∠ADB=∠ADC=90˚.∴AD是ΔABC的角平分线、底边上的中线、底边上的高.三线合一吗?等腰三角形是轴对称图形.等腰三角形的顶角平分线、底边上的高和底边上的中线互相重合(简称“三线合一”).归纳总结等腰三角形的两个底角相等.画出任意一个等腰三角形的底角平分线、这个底角所对的腰上的中线和高,看看它们是否重合?ABCDEFABCD1.等腰三角形的顶角一定是锐角.2.等腰三角形的底角可能是锐角或者直角、钝角都可以.3.钝角三角形不可能是等腰三角形.4.等腰三角形的顶角平分线一定垂直底边.5.等腰三角形的角平分线、中线和高互相重合.6.等腰三角形底边上的中线一定平分顶角.(X)(X)(X)(X)(√)(√)1.按下面的步骤做一做:(1)将长方形纸片对折(2)然后沿对角线折叠,在沿折痕剪开.你有哪些办法可以得到一个等腰三角形?与同伴交流.议一议2.你能尝试用圆规吗?例1等腰三角形的一个内角是50°,则这个三角形的底角的大小是()A.65°或50°B.80°或40°C.65°或80°D.50°或80°典例精析解析:当50°的角是底角时,三角形的底角就是50°;当50°的角是顶角时,两底角相等,根据三角形的内角和定理易得底角是65°.A解∵AB=AC,BD=BC=AD,(已知)∴∠ABC=∠C=∠BDC,∠A=∠ABD.(等边对等角)设∠A=x°,∵∠A+∠ABD+∠ADB=180°,又∵∠BDC+∠ADB=180°,∴∠BDC=∠A+∠ABD=2x°.∵∠ABC=∠C=∠BDC=2x°,∴x+2x+2x=180.(三角形内角和等于180°)解得x=36.∴∠A=36°,∠C=72°.例2如图,在ΔABC中,AB=AC,点D在AC上,且BD=BC=AD,求∠A和∠C的度数.CDBA如图,在△ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.解:∵AB=AD=DC∴∠B=∠ADB,∠C=∠DAC设∠C=x,则∠DAC=x,∠B=∠ADB=∠C+∠DAC=2x,在△ABC中,根据三角形内角和定理,得2x+x+26°+x=180°,解得x=38.5°.∴∠C=x=38.5°,∠B=2x=77°.针对训练:例3已知点D、E在△ABC的边BC上,AB=AC.(1)如图①,若AD=AE,求证:BD=CE;(2)如图②,若BD=CE,F为DE的中点,求证:AF⊥BC.典例精析图②图①证明:(1)如图①,过A作AG⊥BC于G.∵AB=AC,AD=AE,∴BG=CG,DG=EG,∴BG-DG=CG-EG,∴BD=CE;(2)∵BD=CE,F为DE的中点,∴BD+DF=CE+EF,∴BF=CF.∵AB=AC,∴AF⊥BC.图②图①G方法总结:在等腰三角形有关计算或证明中,有时需要添加辅助线,其顶角平分线、底边上的高、底边上的中线是常见的辅助线.1.填空:(1)等腰直角三角形的每一个锐角的度数是;(2)如果等腰三角形的底角等于40°,那么它的顶角的度数是_________;(3)如果等腰三角形有一个内角等于80°,那么这个三角形的最小内角等于____________.20°或50°当堂练习100°45°(4)△ABC中,AB=AC,∠A=36◦,则∠B=______,∠C=____.(5)△ABC中,AB=AC,∠B=36◦,则∠A=______,∠C=____.72°72°108°36°方法总结:等边对等角!2.如图,是由大小不等的等边三角形组成的图案,请找出它的对称轴.解:∵OA=AB,∴∠ABO=∠O=15°,∴∠BAO=150°,∴∠BAC=∠ABO+∠O=30°.∵AB=BC,∴∠ACB=∠BAC=30°,∴∠CBO=135°,∴∠CBD=∠O+∠ACB=45°.∵BC=CD,∴∠D=∠CBD=45°,∴∠BCD=90°,∴∠1=180°-∠BCD-∠BCO=60°.3.如图,∠AOB=15°,且OA=AB=BC=CD.求∠1的度数.15°1CDBOA4.如图,在ΔABC中,AB=AC,∠BAC=120°,点D,E是底边上两点,且BD=AD,CE=AE.求∠DAE的度数.CEDBA解:∵AB=AC,∴∠B=∠C,∴∠B=∠C=(180°-120°)÷2=30°.又∵BD=AD,∴∠BAD=∠B=30°.同理,∠CAE=∠C=30°.∴∠DAE=∠BAC-∠BAD-∠CAE=120°-30°-30°=60°.5.A、B是4×4网格中的格点,网格中的每个小正方形的边长为1,请在图中标出使以A、B、C为顶点的三角形是等腰三角形的所有格点C的位置.AB分别以A、B、C为顶角顶点来分类讨论!8个这样分类就不会漏啦!C1C2C3C4C5C6C7C8拓展提升:等腰三角形的性质课堂小结等腰三角形的两个底角相等(等边对等角).等腰三角形的顶角平分线、底边上的中线和底边上的高重合(三线合一).见《学练优》本课时练习课后作业更多精彩内容,微信扫描二维码获取扫描二维码获取更多资源