第十二章全等三角形12.3角平分线的性质第1课时角平分线的性质学习目标:1.通过操作、验证等方式,探究并掌握角平分线的性质定理.2.能运用角的平分线性质解决简单的几何问题.重点:掌握角的平分线的性质定理,用直尺和圆规作角的平分线.难点:角平分线定理的应用.一、知识链接1.判定两个三角形全等的方法有哪几种?2.如图,在△ABC中,BD平分∠ABC,则∠=∠.过点D作DE⊥BC,垂足为E,则图中线段的长度表示点D到BC的距离.二、新知预习1.OC是∠AOB的平分线,点P是射线OC上的任意一点,操作测量:取点P的三个不同的位置,分别过点P作PD⊥OA,PE⊥OB,点D、E为垂足,测量PD、PE的长.将三次数据填入下表:观察测量结果,猜想线段PD与PE的大小关系,写出结论PD[来源:学科网]PE第一次第二次第三次[来源:学,科,网Z,X,X,K]2.下面四个图中,点P都在∠AOB的平分线上,则PD=PE的是()ABCD3.猜想:角平分线的性质:角平分线上任意一点到两边的相等.三、我的疑惑______________________________________________________________________________________________________________________________________________________自主学习教学备注学生在课前完成自主学习部分1.复习引入(见幻灯片3-5)一、要点探究探究点1:角平分线的尺规作图活动1:如图,是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线.你能说明它的道理吗?活动2:已知∠AOB,类比平分角仪器的原理,用尺规作∠AOB的平分线.并书写主要步骤.提示:(1)已知什么?求作什么?(2)把平分角的仪器放在角的两边,仪器的顶点与角的顶点重合,且仪器的两边相等,怎样在作图中体现这个过程呢?(3)在平分角的仪器中,BC=DC,怎样在作图中体现这个过程呢?(4)你能说明为什么OC是∠AOB的平分线吗?注意:作角平分线是最基本的尺规作图,大家一定要掌握.针对训练已知:平角∠AOB.求作:平角∠AOB的角平分线.探究点2:角平分线的性质画一画:如图,任意作一个角∠AOB,作出∠AOB的平分线OC.在OC上任取一点P,过点P画出OA,OB的垂线,分别记垂足为D、E,测量PD,PE并作比较,你得到什么结论?在OC上再取几个点试一试.证明结论:已知:如图,∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D,E.求证:PD=PE.要点归纳:角的平分线上的点到角的两边的相等.应用所需要的条件:(1)(2)(3)几何语言:∵OP是∠AOB的平分线,课堂探究教学备注配套PPT讲授2.探究点1新知讲授(见幻灯片6-8)3.探究点2新知讲授(见幻灯片9-18)∵PD⊥OA,PE⊥OB,∴典例精析例1:已知:如图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF⊥AC.垂足分别为E,F.求证:EB=FC.方法总结:先利用角平分线的性质定理得到对应线段相等,再利用这个条件证明我们需要证明的两个三角形全等.例2:如下左图,AM是∠BAC的平分线,点P在AM上,PD⊥AB,PE⊥AC,垂足分别是D、E,PD=4cm,则PE=______cm..变式:如上右图,在Rt△ABC中,AC=BC,∠C=90°,AP平分∠BAC交BC于点P,若PC=4,AB=14.(1)则点P到AB的距离为_______.(2)求△APB的面积.(3)求△PDB的周长.方法总结:利用角平分线的性质作辅助线构造三角形的高,再利用三角形面积公式求出线段的长度是常用的方法.针对训练1.如图1,∠1=∠2,PD⊥OA,PE⊥OB,垂足分别为D,E,下列结论错误的是()A.PD=PEB.OD=OEC.∠DPO=∠EPOD.PD=OD2.如图2,Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D,若CD=3cm,则点D到AB的距离DE是()A.5cmB.4cmC.3cmD.2cm3.如图3,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于D,如果AC=3cm,那么AE+DE等于()A.2cmB.3cmC.4cmD.5cm教学备注配套PPT讲授二、课堂小结1.如图,DE⊥AB,DF⊥BG,垂足分别是E,F,DE=DF,∠EDB=60°,则∠EBF=度,BE=.第1题图第2题图第3题图第4题图2.如图,△ABC中,∠C=90°,AD平分∠CAB,且BC=8,BD=5,则点D到AB的距离是.3.用尺规作图作一个已知角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是()A.SSSB.ASAC.AASD.角平分线上的点到角两边的距离相等4.如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=7,DE=2,AB=4,则AC的长是()A.6B.5C.4D.35.如图,已知AD∥BC,P是∠BAD与∠ABC的平分线的交点,PE⊥AB于E,且PE=3,求AD与BC之间的距离.6.如图所示,D是∠ACG的平分线上的一点.DE⊥AC,DF⊥CG,垂足分别为E,F.求证:CE=CF.当堂检测角平分线尺规作图性质定理添加辅助线属于基本作图,必须熟练掌握一个点:角平分线上的点;二距离:点到角两边的距离;两相等:两条垂线段相等过角平分线上一点向两边作垂线段温馨提示:配套课件及全册导学案WORD版见光盘或网站下载:(无须登录,直接下载)教学备注配套PPT讲授4.课堂小结5.当堂检测(见幻灯片19-24)