第2课时角平分线的判定人教版八年级上册数学导学案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第十二章全等三角形12.3角平分线的性质第2课时角平分线的判定学习目标:1.进一步熟练角平分线的画法,证明几何命题的步骤.2.进一步理解角平分线的判定及运用.重点:角平分线的判定及运用.难点:角平分线的判定的灵活运用.一、知识链接1.写出命题“全等三角形的对应边相等”的逆命题.2.写出命题“角平分线上的点到角的两边的距离相等”的逆命题.二、新知预习1.分别画出下列三角形三个内角的平分线你发现了什么特点吗?2.自主归纳(1)角的内部到角的两边的距离相等的点在角的上.(2)①三角形的三条角平分线相交于点,它到.②三角形内,到三边距离相等的点是.三、自学自测1.如图,PM=PN,∠BOC=30°,则∠AOB=.图1图22.如图,AD⊥OB,BC⊥OA,垂足分别为D,C,AD与BC相交于点P,若PA=PB,则∠1与∠2的大小关系是()A.∠1=∠2B.∠1∠2C.∠1∠2D.无法确定四、我的疑惑___________________________________自主学习教学备注学生在课前完成自主学习部分1.情景引入(见幻灯片3-4)一、要点探究探究点1:角平分线的判定定理问题1:交换角的平分线的性质中的已知和结论,你能得到什么结论,这个新结论正确吗?问题2:你能证明这个结论吗?要点归纳:角平分线的判定定理:应用所具备的条件:(1)位置关系:;(2)数量关系:.定理的作用:.应用格式:∵∴点P在∠AOB的平分线上.典例精析例1:如图,要在S区建一个贸易市场,使它到铁路和公路距离相等,离公路与铁路交叉处500米,这个集贸市场应建在何处(比例尺为1︰20000)?方法总结:利用角平分线的判定定理,在铁路和公路形成的夹角的平分线上取合适的点即可.针对训练1.如图,在Rt△ABC的斜边BC上截取CD=CA,过点D作DE⊥BC,交AB于点E,则下列结论一定正确的是()A.AE=BEB.DB=DEC.AE=BDD.∠BCE=∠ACE2.如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为点E,F,AE=AF.求证:点P在∠BAC的平分线上.课堂探究教学备注配套PPT讲授2.探究点1新知讲授(见幻灯片5-8)探究点2:三角形内角平分线的性质及运用活动1:分别画出下列三角形三个内角的平分线,你发现了什么特点吗?活动2:分别过交点作三角形三边的高,用刻度尺量一量,它们有什么数量关系?要点归纳:①三角形的三条角平分线相交于点,它到.②三角形内,到三边距离相等的点是.典例精析例2:已知:如图,△ABC的角平分线BM,CN相交于点P,求证:点P到三边AB,BC,CA的距离相等.方法总结:三角形的三条角平分线交于一点,并且这点到三边的距离相等.例3:如图,在△ABC中,点O是△ABC内一点,且点O到△ABC三边的距离相等.若∠A=40°,则∠BOC的度数为()A.110°B.120°C.130°D.140°方法总结:由已知O到三角形三边的距离相等,得O是内心,再利用三角形内角和定理即可求出∠BOC的度数.针对训练已知:如图,CD⊥AB于D,BE⊥AC于E,CD、BE交于O,∠1=∠2.求证:OB=OC.二、课堂小结教学备注3.探究点2新知讲授(见幻灯片10-19)4.课堂小结角平分线的判定定理内容作用结论角的内部到角两边距离相等的点在这个角的平分线上判断一个点是否在角的平分线上三角形的角平分线相交于内部一点,该点到三角形三边的距离相等.1.如图,某个居民小区C附近有三条两两相交的道路MN、OA、OB,拟在MN上建造一个大型超市,使得它到OA、OB的距离相等,请确定该超市的位置P.2.如图所示,已知△ABC中,PE∥AB交BC于点E,PF∥AC交BC于点F,点P是AD上一点,且点D到PE的距离与到PF的距离相等,判断AD是否平分∠BAC,并说明理由.1.2.3.3.已知:如图,OD平分∠POQ,在OP、OQ边上取OA=OB,点C在OD上,CM⊥AD于M,CN⊥BD于N.求证:CM=CN.4.如图,已知∠CBD和∠BCE的平分线相交于点F,求证:点F在∠DAE的平分线上.拓展提升5.如图,直线l1、l2、l3表示三条互相交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,可选择的地址有几处?画出它的位置.当堂检测教学备注配套PPT讲授5.当堂检测(见幻灯片20-25)温馨提示:配套课件及全册导学案WORD版见光盘或网站下载:(无须登录,直接下载)l1l3l2

1 / 4
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功