导入新课讲授新课当堂练习课堂小结20.2数据的波动程度第二十章数据的分析第2课时根据方差做决策情境引入学习目标1.能熟练计算一组数据的方差;(重点)2.能用样本的方差估计总体的方差及根据方差做决策.(难点)导入新课方差的计算公式,请举例说明方差的意义.方差的适用条件:当两组数据的平均数相等或相近时,才利用方差来判断它们的波动情况.2222121=-+-++-]nsxxxxxxn[()()()方差越大,数据的波动越大;方差越小,数据的波动越小.复习引入讲授新课根据方差做决策每个鸡腿的质量;鸡腿质量的稳定性.抽样调查.问题1某快餐公司的香辣鸡腿很受消费者欢迎.现有甲、乙两家农副产品加工厂到快餐公司推销鸡腿,两家鸡腿的价格相同,品质相近.快餐公司决定通过检查鸡腿的质量来确定选购哪家的鸡腿.(1)可通过哪些统计量来关注鸡腿的质量?(2)如何获取数据?例1在问题1中,检查人员从两家的鸡腿中各随机抽取15个,记录它们的质量(单位:g)如下表所示.根据表中的数据,你认为快餐公司应该选购哪家加工厂的鸡腿?解:样本数据的平均数分别是:747472737515x甲++++=757371757515x乙++++=样本平均数相同,估计这批鸡腿的平均质量相近.甲747475747673767376757877747273乙757379727671737278747778807175222227475747572757375315s甲()()()()-+-++-+-=22222757573757757575815s乙()()()()-+-++1--=解:样本数据的方差分别是:由可知,两家加工厂的鸡腿质量大致相等;由<可知,甲加工厂的鸡腿质量更稳定,大小更均匀.因此,快餐公司应该选购甲加工厂生产的鸡腿.xx=甲乙2s甲2s乙例2在某旅游景区上山的一条小路上,有一些断断续续高低不等的台阶.如图是其中的甲、乙两段台阶路的示意图(图中数字表示每一阶的高度,单位:cm).哪段台阶路走起来更舒服?为什么?212021191920172420171923甲乙分析:通过计算两段台阶的方差,比较波动性大小.∴走甲台阶的波动性更,走起来更舒适.解:∵201921206x甲...231917206x乙...22221220201920212063s甲...=222212223201920172063s乙...=22ss甲乙队员平均成绩方差甲9.72.12乙9.60.56丙9.80.56丁9.61.34甲、乙、丙、丁四名射击队员考核赛的平均成绩(环)及方差统计如表,现要根据这些数据,从中选出一人参加比赛,如果你是教练员,你的选择是()A.甲B.乙C.丙D.丁C练一练议一议(1)在解决实际问题时,方差的作用是什么?反映数据的波动大小.方差越大,数据的波动越大;方差越小,数据的波动越小,可用样本方差估计总体方差.(2)运用方差解决实际问题的一般步骤是怎样的?先计算样本数据平均数,当两组数据的平均数相等或相近时,再利用样本方差来估计总体数据的波动情况.例3某校要从甲、乙两名跳远运动员中挑选一人参加一项校际比赛.在最近10次选拔赛中,他们的成绩(单位:cm)如下:甲:585596610598612597604600613601乙:613618580574618593585590598624(1)这两名运动员的运动成绩各有何特点?分析:分别计算出平均数和方差;根据平均数判断出谁的成绩好,根据方差判断出谁的成绩波动大.解:110x=甲(585+596+610+598+612+597+604+600+613+601)=601.6,s2甲≈65.84;110x=乙(613+618+580+574+618+593+585+590+598+624)=599.3,s2乙≈284.21.由上面计算结果可知:甲队员的平均成绩较好,也比较稳定,乙队员的成绩相对不稳定.但甲队员的成绩不突出,乙队员和甲队员相比比较突出.(2)历届比赛表明,成绩达到5.96m就很可能夺冠,你认为为了夺冠应选谁参加这项比赛?如果历届比赛成绩表明,成绩达到6.10m就能打破纪录,那么你认为为了打破纪录应选谁参加这项比赛.解:从平均数分析可知,甲、乙两队员都有夺冠的可能.但由方差分析可知,甲成绩比较平稳,夺冠的可能性比乙大.但要打破纪录,成绩要比较突出,因此乙队员打破纪录的可能性大,我认为为了打破纪录,应选乙队员参加这项比赛.做一做甲、乙两班各有8名学生参加数学竞赛,成绩如下表:甲6574708065666971乙6075786180626579请比较两班学生成绩的优劣.-5+4+0+10-5-4-1+170+708-10+5+8-9+10-8-5+970+708xx甲乙解:=23=67.522甲乙22甲乙s,s从平均分看两个班一样,从方差看SS,甲班的成绩比较稳定但是从高分看,80分都是1人,75分以上的甲班只有1人,而乙班有4人,占总人数的一半,可见乙班成绩优于甲班综上可知,可见乙班成绩优于甲班当堂练习1.学校准备从甲、乙、丙、丁四名同学中选择一名同学代表学校参加市里举办的“汉字听写”大赛,四名同学平时成绩的平均数(单位:分)及方差s2如下表所示:如果要选出一个成绩好且状态稳定的同学参赛,那么应该选择的同学是._x甲乙丙丁94989896s211.211.8_x丙2.某篮球队对运动员进行3分球投篮成绩测试,每人每天投3分球10次,对甲、乙两名队员在五天中进球的个数统计结果如下:经过计算,甲进球的平均数为=8,方差为.队员每人每天进球数甲1061068乙79789x甲23.2s甲(1)求乙进球的平均数和方差;(2)现在需要根据以上结果,从甲、乙两名队员中选出一人去参加3分球投篮大赛,你认为应该选哪名队员去?为什么?222227+9+7+8+9==8578987888980.85xs乙2乙解:1乙进球的平均数为方差为23=3.2=0.8ssss22乙甲22乙甲我认为应该选乙队员去参加分球投篮大赛.因为甲乙的平均成绩一样,,,所以,说明乙队员进球数更稳定.3.在学校,小明本学期五次测验的数学成绩和英语成绩分别如下(单位:分)数学7095759590英语8085908585通过对小明的两科成绩进行分析,你有何看法?对小明的学习你有什么建议?解:数学、英语的平均分都是85分.数学成绩的方差为110,英语成绩的方差为10.建议:英语较稳定但要提高;数学不够稳定有待努力进步!课堂小结根据方差做决策方差方差的作用:比较数据的稳定性利用样本方差估计总体方差