2.2.1对数与对数运算(第2课时)一、复习回顾101()________________,xaNxaa、对数若且,则叫做aN以为底的对数logaxN记作:2、底数的取值范围:真数的取值范围:aN01aa且0N3____________、常用对数:以为底的对数,自然对数:以为底的对数,10log=lgNNlog=lneNN10e无理数一、复习回顾01(,)log4=xaaNaaNx、指数式与对数式互化:5、对数的性质(0,1)aa且(1)log=___1a(2)log=___aa(3)log=___naalog(4)___aNa对数恒等式:01nN一、复习回顾25111010125231004()lg;()log,;()lg(lg);()xxxx、判断下列命题是否正确若,则()若则()()22552525510log.()lnln,xxxaxMNMN,则()若,则()(6)若则()1010x05xx10110lg,lg√××√××应分类讨论MNMN或22121()logxxx、对数式中的取值范围是3、若log5[log3(log2x)]=0,x=_______二、知识探究求值:24log28log232log23510lg1000lg10000lg13422281324loglog,log:的值与之间思考有何关系?2223248logloglog:将上式推广到一般情况可得什思考2么结论?(1)log()=log+logaaaMNMN二、知识探究(1)log()=log+logaaaMNMN0100,且,,当时aaMN1、对数运算性质:loglogaaMxNy证明:设,,则yxMaNa,,xya,yxMNaa于是log()logxyaaMNaxy由对数定义得:log()=log+log.aaaMNMN即00,lg()lg()xyxyxyz练习:当时,lg+lgxylg+lg+lgxyz的对数等于积对数之和二、知识探究求值:24log28log232log23510lg1000lg10000lg1342223248logloglog2228324logloglog:将上式推广到一般情况可得什思考3么结论?(2)log=loglogaaaMMNN0100,且,,当时aaMN1、对数运算性质:loglogaaMxNy证明:设,,则xyMaNa,,yxMaNa于是(2)log=loglogaaaMMNNglogloxyaaMaxyN由对数的定义可得,logloglog.aaaMMNN即的对数等于商对数之差二、知识探究xya,00,lgxxyy练习:当时,lglgxy二、知识探究求值:24log264log2610lg10000lg14224464loglog:的值与之间有思考何关系?226434loglog5:将上式推广到一般情况可得思考什么结论?3()loglognaaMnM0100,且,,当时aaMN1、对数运算性质:logaMx证明:设,则=,xMa()xnnxnMaa于是,3()loglognaaMnMloglognnxaaMa由对数的定义可得loglog.naaMnM()nR二、知识探究3523lg_______log________x练习:3lgx253lognx0100,且,,当时aaMN1、对数运算性质:3()loglog()naaMnMnR(1)log()=log+logaaaMNMN(2)log=loglogaaaMMNN积的对数等于对数之和商的对数等于对数之差真数是幂,则幂指数可提出作为系数三、知识讲解223313logloglog()log;(2)log;(3)log.aaaaaaxyzxyxyxzzz例、用,,表示下列各式1()loglog()log=log+loglogaaaaaaxyzxyzxyz解:2323231123(3)log=log()log=log+loglog=2log+loglogaaaaaaaaaxyzxyzxyzxyz23232123()logloglogloglogaaaaaxzxzxz四、例题讲解511007524()log(42);(2)lg例、计算下列各式的值119757522222()log(42)log4+log2=7log4+5log2=72+51=解:152552100101025(2)lg=lg=lg=6816521335225533()loglog3(2)lg+lg(3)log+log(4)loglog15P练习第3题622log=log2=13101=lg(52)=lg=21lg5+lg=13355log=log1=051115333=log=log=四、例题讲解三、知识讲解注意:(1)性质成立的条件2224343log()()log()log(),是否成立?0100,,,aaMN且log=naM(2)熟悉对数的运算性质的变形1logaMnloglognaaMnM五、练习巩固2222123loglogloglog.、若,请用、、表示xabcabcx222223loglogloglogxabc解:22223=logloglogabc223=logabc23=abxc二、新课讲解12362349lg,lglg_________________________,lg_________________________,lg_________________________ab思考:已知,则2233lg,lglog,abab思考2:若,则如何用来表示?23lg()23lglg223lg()23lglgabab223lg22322(lglg)ab常用对数表新课讲解c上取以为底的式两边同时对数,得loglogccbxalog=,axb证明:设,xab则loglog,xccabloglog,ccxab即logloglogcacbba即2log3=ln3ln2lg3lg2运用换底公式时,一般是取常用对数/自然对数01010logloglog(;;)cacaabaccbb且且1、对数换底公式:练习:3223227712552573455loglog()__________()_________logloglogln()___________()_________lnlog1、化简12()log()logmmnaabb2、先把下列对数化成以10为底对数,再化简:logloglogcacbba57log57log57log5252loglglgmnbalglgnbmaloganbmlglgmbalglgbma1logabm三、练习巩固2354(3)log3log4log5log22()logloglogcbabca3、计算1lglg=lglg=baab34522345lglglglg=lglglglg1=1()loglogbabalglglg=lglglgbcaabc1=1loglogabba1loglogabba二、新课讲解010101loglo;;)o(glgcacbbaaaccb、换底公式且:且1122loglo()()gloglogmmnaaaanbbmbbm、重要结论:131loglogl)ogg(loaabbbaba即:1的对数是01、(作业本)P74习题2.2A组3、52、《练习册》对数第2课时