课题:2.3.3.2两点间距离课型:新授课教学目标:知识与技能:掌握直角坐标系两点间距离,会用坐标法证明简单的几何问题。过程和方法:通过两点间距离公式的推导,能更充分体会数形结合的优越性。情态和价值:体会事物之间的内在联系,能用代数方法解决几何问题教学重点:两点间距离公式的推导教学难点:应用两点间距离公式证明几何问题。教学过程:一、情境设置,导入新课课堂设问一:回忆数轴上两点间的距离公式,同学们能否用以前所学的知识来解决以下问题平面直角坐标系中两点间距离公式:22122221PPxxyy。分别向x轴和y轴作垂线,垂足分别为112200NyMx,,,直线12PNN12与P相交于点Q。在直角ABC中,2221212PPPQQP,为了计算其长度,过点1P向x轴作垂线,垂足为110Mx,过点向y轴作垂线,垂足为220Ny,,于是有2222221212121221PQMMxxQPNNyy,所以,2221212PPPQQP=222121xxyy。由此得到两点间的距离公式22122221PPxxyy在教学过程中,可以提出问题让学生自己思考,教师提示,根据勾股定理,不难得到。二、例题分析例1.以知点A(-1,2),B(2,7),在x轴上求一点,使PAPB,并求PA的值。解:设所求点P(x,0),于是有2222102207xx由PAPB得2225411xxxx解得x=1。所以,所求点P(1,0)且22110222PA通过例题,使学生对两点间距离公式理解。应用。设问:本题能否有其它解法同步练习:书本106页第1,2题例2.证明平行四边行四条边的平方和等于两条对角线的平方和。分析:首先要建立直角坐标系,用坐标表示有关量,然后用代数进行运算,最后把代数运算“翻译”成几何关系。这一道题可以让学生讨论解决,让学生深刻体会数形之间的关系和转化,并从中归纳出应用代数问题解决几何问题的基本步骤。证明:如图所示,以顶点A为坐标原点,AB边所在的直线为x轴,建立直角坐标系,有A(0,0)。设B(a,0),D(b,c),由平行四边形的性质的点C的坐标为(a+b,c),因为22222222ABaCDaADbcBC,,2ACab22,+c222BD=b-a+c所以,2222222AB+CD+AD+BC=2a+b+c22222AC+BD=2a+b+c所以,222222AB+CD+AD+BC=AC+BD因此,平行四边形四条边的平方和等于两条对角线的平方和。上述解决问题的基本步骤可以让学生归纳如下:第一步:建立直角坐标系,用坐标表示有关的量。第二步:进行有关代数运算。第三步;把代数结果“翻译”成几何关系。思考:同学们是否还有其它的解决办法?还可用综合几何的方法证明这道题。课后练习1.证明直角三角形斜边上的中点到三个顶点的距离相等2.在直线x-3y-2=0上求两点,使它与(-2,2)构成一个等边三角形。3.(1994全国高考)点(0,5)到直线y=2x的距离是归纳小结:主要讲述了两点间距离公式的推导,以及应用,要懂得用代数的方法解决几何问题,建立直角坐标系的重要性。作业布置:110页6、7、8题课后记: