1.2子集、补集、全集习题课一、有关概念1、元素与集合、集合与集合之间的关系(1)元素与集合的关系是属于与不属于的关系用符号∈、表示(2)集合与集合之间的关系是包含、真包含、相等的关系,用符号=表示。1、判断(1)若集合A不是集合B的子集,则A中的元素都不在B中。(2)若集合A是集合B的子集,则集合B中一定有不属于A的元素。(3)空集没有子集。(4)若集合A是集合B的子集,则A中的元素都属于B。二、习题2、判断下列关系式(1){0}(2){0}(3){0}(4)0={0}(5)0{0}3、如果数集{0、1、x+2}中有3个元素,那么x不能取哪些值。解:根据元素互异性x+2≠0且x+2≠1∴x≠-2且x≠-14、U={x|x2-8x+15=0xR},求U的所有子集。解:∵x2-8x+15=0∴x1=3x2=5∴所有子集为、{3}、{5}、{3、5}5、A={x|x≤5xN},B={x|1x5xN}求CAB解:CAB={0,1,5}6、设全集U=R,集合A={x|a≤x≤b},CUA={x|x3或x4},求a,b解:a=3b=47、设全集是数集U={2,3,a2+2a-3},已知A={b,2}CUA={5},求实数a、b的值。解:①∵CUA={5}∴5U∴a2+2a-3=5②∵AU∴b=3∴由①②得解:由x2+x-6=0得x=-3或x=2∴P={-3、2}8、若集合P={x|x2+x-6=0},Q={x|ax-1=0},且QP,求实数a可取的值组成的集合,并写出它的所有非空真子集。当a=0时,ax-1=0无解,此时Q=满足QP当a≠0时,由ax-1=0得,此时Q={}因为QP,所以=-3或2,解得综上可得由实数a组成得集合为{}所以真子集有……1、满足{a,b}A{a,b,c,d}的集合是什么。2、若{a,0,1}=,求a,b,c。