第四单元可能性一、教学内容1.体验事件的确定性和不确定性,列出所有的可能。2.定性描述可能性的大小。本单元内容由原实验教材三年级上册移来。关于“可能性”这一内容,原来的实验教材分两次进行了集中编排。第一次是在三年级上册,主要是让学生初步体验有些事件的发生是确定的,有些则是不确定的,知道事件发生的可能性是有大小的。第二次在五年级上册,使学生对“可能性”的认识和理解逐渐从定性向定量过渡,学会用分数描述事件发生的概率。但实践表明,低年级学生对不确定现象理解有困难,并且《标准(2011)》对这部分内容也进行调整,第一学段不再学习概率的内容,将可能性的教学移到第二学段。二、教学目标1.在具体情境中,通过现实生活中的有关实例使学生感受简单的随机现象,初步体验有些事件的发生是确定的,有些是不确定的。2.通过实际活动(如摸球),使学生能列出简单的随机现象中所有可能发生的结果。3.通过试验、游戏等活动,使学生感受随机现象结果发生的可能性是有大小的,能对一些简单的随机现象发生的可能性大小作出定性描述,并能和同伴进行交流。三、编排特点1.运用数据分析来体会随机性,强调对可能性大小的定性描述。在可能性知识的教学中,应加强对学生概率素养的培养,增强学生对随机思想的理解,使学生充分感受和体验简单随机现象中数据的随机性,能对一些简单的随机现象发生的可能性大小作出定性描述,而不要把丰富多彩的可能性内容变成了机械的计算和练习。《标准(2011)》中也提出运用数据分析来体会随机性,加强对可能性大小的理解,使这部分内容更具可操作性,符合小学阶段学生学习的特点。2.提供丰富的现实学习素材,促进数学知识的理解。本单元教材不仅利用丰富多采的呈现形式,为学生提供现实的、有趣的学习素材,同时注意所设计的教学活动能使学生经历知识的形成过程。首先,教材选取学生熟悉的生活情境作为教学素材,以“联欢会上抽签表演节目”(例1)、大量的活动(做一做、例2)等来丰富学生对不确定现象的体验,使学生初步了解现实世界中存在着的不确定现象,并逐步知道事件发生的可能性有大有小;其次,教科书中设计了多种不同层次的、有趣的活动和游戏,如摸棋子试验、涂色活动、抽签游戏、抛硬币、掷骰子等,这些活动都特别注意联系学生的生活实际,不但便于教师组织教学,更使学生在大量观察、猜测、试验、思考与交流的数学活动中,逐步丰富对随机现象和可能性大小的体验,经历知识的形成过程;再次,教科书第49页编排了“生活中的数学”,一方面可以加深学生对所学数学知识的理解,另一方面也使学生感受到可能性知识与生活的联系,有利于培养学生的应用意识。3.注重方法的指导和知识的整理。要体验随机现象中数据的随机性,就要求学生在进行相关试验活动或游戏活动时必须遵守一定的规则,例如摸球时不能看着球摸,也不能摸完一次后不摇匀球就接着摸,这样都不能很好地体现随机性。教材在相关例题及习题中明确提出了“放回去摇匀再摸”“按要求涂一涂”“随意摸一张”等要求,对学生的试验和游戏活动进行方法的指导,使学生能更好地体验数据的随机性。四、具体编排1.主题图。主题图从学生已有的生活经验出发,呈现了学生熟悉的“联欢会上抽签表演节目”的场景,使学生体验在现实生活中存在着不确定现象,充分感受数学与生活的联系。教师还可以利用买体育彩票、抽奖等现实题材来引入可能性的内容。2.例1:体验事件发生的确定性和不确定性。由主题图的情境自然引出例题的学习。原来教材安排的摸球活动,这里的抽签游戏更贴近学生的生活,也更容易让学生理解和体验,可以让学会亲历事件发生的必然性和随机性。例题通过一次一次的抽签的活动,让学生亲身感受、体验事件发生的确定性和不确定性。第一次,小明可能会抽到什么节目?这里让学生体会有三种可能,每个结果发生的可能性是相同的。小明抽到跳舞后,剩下的两张,小丽可能会抽到什么?体会有两种可能,并且不可能是跳舞。最后只剩唱歌,小雪一定会抽到它。学生在活动过程中,通过观察、实践、描述和交流充分感受事件发生的确定性和不确定性。3.例2:正向体会可能性的大小。例2和例3都是体会可能性的大小,分别从正反两个方向体会。例2编排分两个层次:一是,列出可能发生的结果。通过摸棋子活动,让学生通过动手试验后列出所有可能发生的结果。也可以让学生先猜测后验证。二是,通过统计规律,感受可能性的大小。接下来,让学生在收集、分析数据以及讨论交流统计结果的活动中,初步感受随机事件发生的统计规律性,并知道事件发生的可能性是有大小的。最后,引导学生根据试验的统计结果对下一次试验的情况作出推测,使学生进一步感受可能性的大小。要注意让学生明白:单次试验的结果是不确定的,但当大量重复试验就呈现一种规律。比如老师可以提问:再摸一次一定能摸到红色的棋子吗?让学生体会:再摸一次,两种颜色的棋子都有可能,但是摸出红色的可能性大。4.例3:逆向推理,体会可能性的大小。教材同样是通过统计规律,让学生感受可能性的大小。这里是根据摸棋子试验的统计结果来推测原来盒子里的球那种颜色的多,通过实际验证,进一步体会随机事件发生的统计规律性,感受可能性的大小。教学时可以分小组活动,记录统计的结果,从每次摸出的情况到小组统计的结果,最后到小组汇总的结果,让学生感知和理解试验次数足够多时,实验数据呈现出的统计规律性。五、教学建议1.引导学生借助观察、猜测、实验等来体验事件的确定性与不确定性,感受可能性的大小。对于不确定性现象和可能性,第二学段的学生在生活中已经有了一定的经验和体验。在教学中,不管是在学生熟悉的生活情境还是感兴趣的游戏活动中(如掷硬币、玩转盘、摸卡片等),教师都应注意创设各种问题情境,充分调动学生的主动性和积极性,鼓励学生亲自动手试验,在试验中体验事件发生的可能性,让学生在具体的操作活动中进行独立思考并主动与同伴交换自己的想法,引导学生在观察、猜测、试验与交流等数学活动中,充分感受和体验不确定现象和事件发生的可能性,经历知识的形成过程。但也要注意一点,虽然在这儿都是借助于实验来验证,但也要逐渐引导学生从实验结果所呈现的规律性来认识可能性的大小,为后面的学习打下良好的基础。2.把握好教学要求。本单元主要是让学生对随机现象“初步体验”和“感受”,因此,教师在引导学生感受“确定事件”“不确定事件”以及“事件发生的可能性大小”时,只要让学生能够结合具体的问题情境,用“一定(肯定)”“不可能”“可能”“经常”“偶尔”等词语来描述事件发生的可能性就可以了,不必要求学生使用有关术语进行解释,也不必要求学生求出可能性的具体大小。综合与实践掷一掷一、利用的数学知识1.组合(两个骰子上的数字之和)。2.事件的确定性和不确定性、列举所有可能出现的结果(每个骰子上可能的结果是1至6六个数,组成的和可能是2至12的所有数,不可能是1或13等数)。3.可能性大小(组成的和是2至12中任一个数,但发生的可能性大小是不同的)。二、活动步骤(一)示范游戏1.体验确定现象与不确定现象,列举所有可能的结果。(运用组合的知识,判断哪些和不可能出现,哪些和可能出现。)2.教师提出游戏规则,学生猜想结果。11个可能结果中教师选5个,学生选6个,学生错误地认为赢的可能性比教师大。3.开始游戏。学生总是输,产生认知冲突,从而引起进一步探索的欲望。(二)小组内游戏,探索结论。通过小组内游戏的方式,进行实验,利用统计的方式呈现实验的结果,初步探索教师总能赢的原因。要引导学生在实验的结果中寻找统计学上的规律。(三)理论验证通过组合的理论来验证实验的结果。可以用不同的方式来进行组合,让学生探讨每个“和”所包含的组合情况的多少与这个“和”出现的次数之间的关系。