第五单元倍的认识一、教学内容本册教材的这一单元,是在学生学习了乘法与除法的初步认识的基础上安排教学的,主要由两部分内容组成:一是建立倍的概念;二是解决与倍有关的实际问题。二、教学目标1.在分类、观察、比较等活动中,获得“倍”的概念的直观体验,结合具体情境理解“几倍”与“几个几”的联系,建立“倍”的概念。2.能解决“求一个数是另一个数的几倍”“一个数的几倍是多少”的实际问题,在解决问题的过程中培养几何直观,渗透模型思想。3.培养学生观察、分析、合作交流、语言表达等能力,感受数学与实际生活的联系。三、编排特点1.关注学生已有的知识基础,通过多次感知建立“倍”的概念修订后的教材将原来分散在二年级上册和二年级下册的关于“整数倍”的内容在本单元集中编排,充分利用学生已有的乘法和除法的知识,帮助学生建立倍的概念。先利用“几个几”引出倍的含义后,再从除法的角度加深对倍的概念的理解。“倍”的概念涉及两个量之间的比较,十分抽象,不易理解。因此,教材安排多个层次的活动,让学生通过多次感知,在不断比较和抽象的过程中建立倍的概念。2.注重方法指导,通过解决问题建构数学模型首先,通过解决问题,加深对“倍”的含义的理解。“比较量÷标准量=倍数”是关于倍的基本数学模型。关于倍的实际问题,主要有三类:求一个数是另一个数的几倍(简称“求倍数”);求一个数的几倍是多少(简称“求比较量”);已知一个数的几倍是多少,求这个数(简称“求标准量”)。教材先讲“求倍数”,再讲“求比较量”,借助线段图,并运用除法和乘法解决问题来加深学生对倍概念的认识。其次,注重借助图示分析数量关系,介绍线段图。例2呈现的是形象图,例3呈现的是线段图,但两种图示都展示了倍比关系的基本结构:两个量比较,比较量里包含几个标准量。3.注重几何直观,帮助学生理解数学例如,呈现实物及示意图、线段图等多种直观形式;对分析数量关系十分重要的线段图的教学则按实物图——色条图——线段图的层次不断递进。例如,每两根为一组把萝卜圈出来,直观形象地展示出了两个数量之间的倍比关系,将学生的关注点引导到“比较量里包含几个标准量”,帮助学生建立“倍”的模型。另一方面,在解决问题的教学中,注重借助图示分析数量关系。四、具体编排1.例1(倍的含义)(1)教材提供了一个“小兔吃萝卜”的童话情境,以激发学生学习的兴趣。(2)通过比较胡萝卜(2根)和红萝卜(6根)的数量,根据3个2根的关系,引出“一个数的几倍”的含义。(3)通过“圈一圈”,让学生在动手操作中比较白萝卜与胡萝卜数量之间的关系,由旧知识“几个几”转化为新知识“倍”的含义。练习题ppt2.例2(“求一个数是另一个数的几倍”的问题)(1)提供“画示意图”“列除法算式”解答两种方法,体现解决问题方法的多样化。使学生明确解决“求一个数是另一个数的几倍”可以用除法,同时意识到画图策略是帮助弄清题意、解决问题的重要手段。(2)画图策略(3)检验方法把所求结果当作已知条件进行检验,对检验方法进行指导,同时培养学生形成检验的良好学习习惯。3.例3(“求一个数的几倍是多少”的问题)(1)画图策略(2)知道画图方法(3)检验:通过呈现学生主动思考解答结果是否正确的情况,培养学生反思的习惯。(4)数学模型增加ppt:开放型题目五、教学建议1.重视意义理解,多角度、循序渐进建立倍的概念倍是一个比较抽象的概念,学生建立和理解倍的概念,需要一个反复、持续的过程。教学时要注意在让学生在充分的活动中逐步加深对倍的认识,理解倍的本质。一方面,注意循序渐进认识倍的概念。先让学生在“几个几”的基础上来初步认识“一个数的几倍”的含义,再结合除法从比较关系的角度对倍的概念进行再认识。可以让学生思考:求红萝卜的个数(6个)是胡萝卜的(2个)几倍,就是以胡萝卜为标准量,看红萝卜里包几份白萝卜,包含了3份,所以红萝卜的个数是胡萝卜的3倍。在教学例2时,注意让学生充分经历用语言描述问题、画图表征数量关系、列除法算式解决问题的过程,加深学生对倍概念的认识。另一方面,注意在“变化”中加深对倍的认识。4红花,2朵黄花.变化6红花、10红花、14红花,倍数变化(“比较量”与“倍数”成正比例关系);18朵红花,2朵黄花。变化:3朵黄花、6朵、9朵,标准量变化,倍数也变化(“标准量”与“倍数”成反比例关系)让学生在有趣的“变化”中进一步认识倍,感受在比较倍数关系时标准的重要性。(高老师课件)2.重视多元表征及其之间的转化,建立倍的模型{C}{C}{C}首先,可增加“连续量”的比较,丰富学生的图形表征。例如,涂出给定纸条的长度4倍等。其次,在教学用“倍”的知识解决问题时,注意让学生充分经历用语言描述问题、画图表征数量关系、列除法算式解决问题的过程,并引导学生说一说其中的联系,引导学生在语言表征、图形表征(实物操作、画示意图等)、算式表征等多种表征之间进行转化,建立“倍”的模型。(详见“例2的教学建议(2)”。)3.重视主体参与,形成几何直观借助图形直观首先需要把研究“对象”抽象成为“图形”,再把“对象之间的关系”转化成为“图形之间的关系”,这样就把研究的问题为“图形的数量或位置关系”的问题,进而进行思考分析,这一系列的转化显然不是天然而成的。线段图对第一次接触的学生来说却是抽象的,不是学生可以一蹴而就的。在教学中,可以画形象的实物图,也可以画抽象的线段图,并让学生慢慢过渡到画线段图。对于画线段图的方法需要加强指导,而且要注意把握好教学要求。