数列求和复习内容1、数列的和2、等差数列的前n项和公式,并简述推导方法3、等比数列的前n项和公式,并简述推导方法设等差数列{an}首项为a1,公差为dSn=a1+a2+a3+……+an=a1+a1+d+a1+2d+……+a1+(n-1)dSn=an+an-d+an-2d+……+an-(n-1)d2Sn=(a1+an)+(a1+an)+……+(a1+an)Sn=2)(1naan设等比数列{an}的首项是a1,公比是qSn=a1+a2+……+an=a1+a1q+a1q2+……+a1qn-1qSn=a1q+a1q2+a1q3+……+a1qn-1+a1qn(1-q)Sn=a1-a1qnSn=qqna1)1(1尝试应用A2002B2004C2006D20081、有限数列A={a1,a2,a3…an},Sn为其前n项和,定义为A的“凯森和”,如有500项的数列,a1,a2…a500的“凯森和”为2004,则有501项的数列2,a1,a2…a500的“凯森和”为———nS...SSn21200450050021SSS500200450021SSS501)2(...)2()2(250021SSS501...501250021SSS2002501500200450122、已知alg(xy))0,0(,lg...)lg(lg1yxySyxxnnn求SyxxnnnySlg...)lg(lg1xxyySnnnlg...)lg(lg1)(lg...)(lg)(lg2xyxyxySnnnann)1(3、求和)0(,)12(...7531132xxnxxxSnn(1)x=1时,Sn=n2(2)x≠1时S=1+3x+5x2+7x3+…+(2n-1)xn-1x·S=x+3x2+5x3+…+(2n-1)xn-1+(2n-1)xn(1-x)S=1+2(x+x2+x3+…+xn-1)-(2n-1)xnxnxxxnn)12(1)1(211其他求法)1(...)1()1(22222xxxxxxSnnn求Sn第一题第二题求数列)2(1...531,421,311nn的前n项和反馈练习1、等比数列的首项为a,公比为q,Sn为前n项和,求S1+S2+…+Sn2、正数数列{an}的前n项和Sn满足Sn=)1(412na(1)求{an}的通项公式(2)设11nnaabn记{bn}的前n项和为Tn,求Tn反馈练习1答案(1)q=1时S1+S2+…+Sn=a+2a+…+na=2)1(ann(2)q≠1时,S1+S2+…+Sn)]1(...)1()1[(12qqqqan)]...([12qqqnqan]1)1([1qqqnqanqqaqqnan1)1(1反馈练习2答案(1)当n≥2时,])1()1([411221nnnnnaaSSa整理得0)2)((11nnnnaaaa∵0)(1nnaa∴0)2(1nnaa∴12nan(2)当n=1时,)1(411211aSa得a1=1)121121(21)12)(12(1nnnnbn)121121...5131311(21nnTn)1211(21n