椭圆的几何性质高二数学第8.2节复习:1.椭圆的定义:到两定点F1、F2的距离和为常数(大于|F1F2|)的点的轨迹叫做椭圆。2.椭圆的标准方程是:3.椭圆中a,b,c的关系是:a2=b2+c2新课:以为例来研究椭圆的性质!xyOA1A2B1B2F2标准方程图象范围对称性顶点坐标焦点坐标半轴长焦距a,b,c关系离心率|x|≤a,|y|≤b|x|≤b,|y|≤a关于x轴、y轴成轴对称;关于原点成中心对称。(a,0),(0,b)(b,0),(0,a)(c,0)(0,c)长半轴长为a,短半轴长为b.焦距为2c;a2=b2+c2例1已知椭圆方程为16x2+25y2=400,它的长轴长是:。短轴长是:。焦距是:。离心率等于:。焦点坐标是:。顶点坐标是:。外切矩形的面积等于:。108680例2.已知椭圆方程为6x2+y2=6它的长轴长是:。短轴长是:。焦距是:。离心率等于:。焦点坐标是:。顶点坐标是:。外切矩形的面积等于:。例3.已知椭圆中心在原点,一个焦点在y上长袖时短袖的2倍,焦距为2且过(2,-6)对称轴为坐标轴,球椭圆的方程。离心率为小练习:已知椭圆的方程为x2+a2y2=a(a0且a1)它的长轴长是:;短轴长是:;焦距是:;离心率等于:;焦点坐标是:;顶点坐标是:;外切矩形的面积等于:;当a1时:。。。。。。。当0a1时标准方程图象范围对称性顶点坐标焦点坐标半轴长焦距a,b,c关系离心率|x|≤a,|y|≤b|x|≤b,|y|≤a关于x轴、y轴成轴对称;关于原点成中心对称。(a,0),(0,b)(b,0),(0,a)(c,0)(0,c)长半轴长为a,短半轴长为b.焦距为2c;a2=b2+c2补充:与《几何原本》齐名的《圆锥曲线论》公元前三世纪产生了具有完整体系的欧几里得的《几何原本》。半个世纪以后,古希腊的另一位数学家阿波罗尼斯又著《圆锥曲线论》(8卷)—以其几乎将圆锥曲线的全部性质网罗殆尽而名垂史册。在解析几何之前的所有研究圆锥曲线的著作中,没有一本达到象《圆锥曲线论》那样对圆锥曲线研究得如此详尽的程度。解析几何是由费尔马和笛卡尔分别创立的。自从有了解析几何,圆锥曲线的研究才开辟了新的纪元。