高三数学课件作二面角的平面角的常用方法高三数学课件

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

二面角从空间一直线出发的两个半一、二面角的定义二、二面角的平面角角的平面角一个平面垂直于二面角的棱,并与两半平面分别相交于射线PA、PB垂足为P,则∠APB叫做二面ABPγβαιαβι平面所组成的图形叫做二面角1、定义二面角二面角2、作二面角的平面角的常用方法①、点P在棱上②、点P在一个半平面上③、点P在二面角内ιpαβABABpαβιABOαβιp—定义法—三垂线定理法—垂面法二面角1、如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上任一点,则二面角P-BC-A的平面角为:A.∠ABPB.∠ACPC.都不是练习2、已知P为二面角内一点,且P到两个半平面的距离都等于P到棱的距离的一半,则这个二面角的度数是多少?pαβιABOABCP60º二面角例1.如图,已知P是二面角α-AB-β棱上一点,过P分别在α、β内引射线PM、PN,且∠MPN=60º∠BPM=∠BPN=45º,求此二面角的度数。βαABPMNCDO解:在PB上取不同于P的一点O,在α内过O作OC⊥AB交PM于C,在β内作OD⊥AB交PN于D,连CD,可得∠COD是二面角α-AB-β的平面角设PO=a,∵∠BPM=∠BPN=45º∴CO=a,DO=a,PCa,PDa又∵∠MPN=60º∴CD=PCa∴∠COD=90º因此,二面角的度数为90ºaOPC二面角例2.如图P为二面角α–ι–β内一点,PA⊥α,PB⊥β,且PA=5,PB=8,AB=7,求这二面角的度数。过PA、PB的平面PAB与棱ι交于O点∵PA⊥α∴PA⊥ι∵PB⊥β∴PB⊥ι∴ι⊥平面PAB∴∠AOB为二面角α–ι–β的平面角又∵PA=5,PB=8,AB=7由余弦定理得∴∠P=60º∴∠AOB=120º∴这二面角的度数为120º解:βαABPιO二面角OABPC取AB的中点为E,连PE,OE∵O为AC中点,∠ABC=90º∴OE∥BC且OEBC在Rt△POE中,OE,PO∴∴所求的二面角P-AB-C的正切值为例3.如图,三棱锥P-ABC的顶点P在底面ABC上的射影是底面Rt△ABC斜边AC的中点O,若PB=AB=1,BC=,求二面角P-AB-C的正切值。∴∠PEO为二面角P-AB-C的平面角在Rt△PBE中,BE,PB=1,PEOE⊥AB,因此PE⊥ABE解:EOP二面角练习1:已知Rt△ABC在平面α内,斜边AB在30º的二面角α-AB-β的棱上,若AC=5,BC=12,求点C到平面β的距离CO。βαACBOD练习2:在平面四边形ABCD中,AB=BC=2,AD=CD=,∠B=120º;将三角形ABC沿四边形ABCD的对角线AC折起来,使DB′=,求△AB′C所在平面与△ADC所在平面所成二面角的平面角的度数。ABCB’DO二面角二、二面角的平面角一、二面角的定义从空间一直线出发的两个半平面所组成的图形叫做二面角1、定义2、求二面角的平面角方法①点P在棱上②点P在一个半平面上③点P在二面角内ABPγβαι小结αβιABαβιpιpαβABpαβιABO—定义法—三垂线定理法—垂面法二面角αβABCDA为二面角α–CD–β的棱CD上一点,AB在平面α内且与棱CD成45º角,又AB与平面β成30º,求二面角α–CD–β的大小。作业二面角二面角

1 / 11
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功