高三数学课件复习数列求和高三数学课件

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

§3.4数列求和•考点透析•基础自测•典例精析•方法总结•同步测试考点透析1首页考123基123456例123456方12同1234567891011121、在求数列的前n项和Sn时,要掌握以下几种常用方法:数列等比等差递推公式通项公式求和性质错位相减法裂项求和法数学归纳法分组求合法构造法递归法迭代法叠加、乘法倒置相加法定义考点透析2首页考123基123456例123456方12同1234567891011122、掌握一些常见数列的前n项和公式:2)1n(nn4321)1(、2n)12n(531)2(、)12n)(1n(n61n321)3(2222、23333]2)1n(n[n321)4(、……考点透析3首页考123基123456例123456方12同1234567891011123、对通项公式中含有(一1)n的一类数列,在求Sn时要注意讨论n的奇偶性。方法:(1)S奇+S偶(2)奇偶配对注意:(1)奇偶项数(2)公差、公比基础自测1首页考123基123456例123456方12同12345678910111210099D.101100C.9998B.99100A.)(S,Sn1)n(n1199n则项和为的前、已知数列1n1n1)1n(n1解析:1nn1n11)n11n1()1n12n1()3121()2111(Sn10099S99D答案:裂项基础自测2首页考123基123456例123456方12同123456789101112叠乘基础自测3首页考123基123456例123456方12同12345678910111276D46C76B13ASSS34n1211713951Sna33122151nnn....)().()(}{.的值为则项和的前已知数列295774aaa13951S:15141315)()()(解析6112160a154S313144114S2276614429SSS312215B答案:奇偶配对基础自测4首页考123基123456例123456方12同12345678910111220042003.D2003.C20032002.B20022001.A)(a2n,aa,0a}{a.422003n1n1n那么满足已知数列112233n2n2n1n1nnna)aa()aa()aa()aa()aa(a)1n(n1)(n21)]n([1201222)3n(2)2n(2)1n(2)2n()1n(2aa2naa-1nnn1n解析:20032002a2003B答案:叠加相消基础自测5首页考123基123456例123456方12同123456789101112分组求和10D.9C.8B.7.A   基础自测6首页考123基123456例123456方12同123456789101112._____30|}a{|2n,33a}{a.6nnn项之和为前则数列中,已知数列;0a17n;0a16n}a{,233n,2n33,0annnn时,当时,中当所以所以解析:令|a||a||a||a|303213018171621aaaaaa)aaa(1621新数列……原数列……基础自测6首页考123基123456例123456方12同123456789101112._____30|}a{|2n,33a}{a.6nnn项之和为前则数列中,已知数列;0a17n;0a16n}a{,233n,2n33,0annnn时,当时,中当所以所以解析:令|a||a||a||a|303213018171621aaaaaa)aaa(1621)SS(S163016)d2293030a(]d21516162[a11452)]2(22930302[)]2(215161631[23016S2S基础自测6首页考123基123456例123456方12同123456789101112._____30|}a{|2n,33a}{a.6nnn项之和为前则数列中,已知数列;0a17n;0a16n}a{,233n,2n33,0annnn时,当时,中当所以所以解析:令|a||a||a||a|303213018171621aaaaaa)aaa(1621162aa161142aa3017452142)27()1(162131构造新数列._____n|}a{|n,233a}{a6.nnn项之和为前则数列中,已知数列;;}{,,,0a17n0a16na233n2n330annnn时,当时,中当所以所以解析:令||||||||n321naaaaS16n时,当||||||||||||n1716321aaaaaa17n时,当n18171621aaaaaa)aaa(1621162aa16116)-(n2aan1725616)(n16)(n22n)(331)(16213122n1n321n32nn2aaaaaa17n16n25616)(nn32nS22n典例精析1首页考123基123456例123456方12同1234567891011122nn2222n)x1x()x1x()x1x(S1:求和例)x12x()x12x()x12x(S2n2n4422n解:)x1x1x1(2n)xxx(2n422n4222n222n2nx1)x1(x2nx1)x(1xS2n22n22n21)x(x)1x(2n1x1)(xx2nx)1(x)1x)(1x(2n222n2n时当1x)1(时当1x)2(4nSn分组求和典例精析2首页考123基123456例123456方12同123456789101112成立?均有使得对任意是否存在最大的整数32mTNnm,n*求数列的通项公式且满足中,:数列例)1()Nn(0a2aa,2a,8a}a{2*n1n2n41n)N(nbbbT),Nn()a12(n1b)2(*n21n*nn设数列。的值;不存在说明理由若存在求出m23)82(3)aa(d,}a{0a2aa)1(14nn1n2n公差成等差数列知由解:)2n2(n1)a12(n1b(1))2(nn知由)1n1n1(21n21nbbbT)]1n1n1()3121()211[(211nn21)1n11(210)1n)(2n(121)1nn2n1n(21TTn1n8,m4132m,41TTT1minn,即只需是递增数列,7.m故符合条件的最大整数分组求和典例精析3首页考123基123456例123456方12同123456789101112,是首相为满足:已知数列例1,aa,,aa,aa,a}a{31nn23121n的等比数列。公比为31.Snb,a)12n(b)2(a)1(nnnnn项和前求如果求1n1nn1)31(aa2n1,a)1(时,当解:)aa()aa()aa(aa1nn23121n)311(23)31()31(311n-1n2*nn1Nn),311(23a1a1n适合上式,时,当n21nnnnbbbS),311(23)12n(a)12n(b)2(而)]312n353331()12n(531[23Sn32nnn31n1T2n1)-(2n531又)31n1n(23Sn2nn32n312n353331T令分组求和错位相减n1n32n31-2n332n353331T令1nn432n312n332n353331T31则1nn32n312n)313131(231T32①②1n1n2312n311])31(1[312311n322n32nn31n1T①-②得:典例精析4首页考123基123456例123456方12同1234567891011123)(n3tS)32t(3tS,3tS)32t(3tS)1(:2n-1n1nn解3)(n3t32taa,0a)32t(a3t-1nn1nn即两式相减得:3t32ta3ta)32t()a3t(a,1Sa2121112)(n3t32taa3t32taa-1nn12.3t32t1}a{n的等比数列,公比为是首相为n1nn1nnn1nnn1nb),b1(fb,1b},{b)t(f}a{2}a{)1()2n,0t(3tS)32t(3tSSn,1a}a{4求使,作数列的公比为)设数列(是等比数列;求证:数列满足关系式项和前的首相:已知数列例12n2n2n12n54433221bbbbbbbbbbbb)3(求和:1n1nnb32)b(fbt1323t32t)t(f)2(.321}b{n的等差数列,公差为是首相为)12n(3132)1n(1bnn1nn1nnn1nnn1nb),b1(fb,1b},{b)t(f}a{2}a{)1()2n,0t(3tS)32t(3tSSn,1a}a{4求使,作数列的公比为)设数列(是等比数列;求证:数列满足关系式项和前的首相:已知数列例12n2n2n12n54433221bbbbbbbbbbbb)3(求和:.3441}b{}b{)12n(31b(2))3(2n12nn等差数列,公差为和分别是首相为、知由12n2n2n12n54433221bbbbbbbbbbbb特性n1nn1nnn1nnn1nb),b1(fb,1b},{b)t(f}a{2}a{)1()2n,0t(3tS)32t(3tSSn,1a}a{4求使,作数列的公比为)设数列(是等比数列;求证:数列满足关系式项和前的首相:已知数列例12n2n2n12n54433221bbbbbbbbbbbb)3(求和:)12n(31b(2))3(n知由.3441}b{}b{2n12n等差数列,公差为和分别是首相为、12n2n2n12n54433221bbbbbbbbbbbb)bb(b)bb(b)bb(b12n12n2n534312)bbb(342n42)3n2n(94n)314n35(21342奇偶配对)12n(31b(2))3(n知由)116n(91)12n2(311]1)2(2n[31bb22n12n)]316nn16()3216216()3116116[(91)]1n16()12(161)116[(91S222222n)316n16

1 / 44
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功