课题:第03课时含有绝对值的不等式的证明目的要求:重点难点:教学过程:一、引入:证明一个含有绝对值的不等式成立,除了要应用一般不等式的基本性质之外,经常还要用到关于绝对值的和、差、积、商的性质:(1)baba(2)baba(3)baba(4))0(bbaba请同学们思考一下,是否可以用绝对值的几何意义说明上述性质存在的道理?实际上,性质baba和)0(bbaba可以从正负数和零的乘法、除法法则直接推出;而绝对值的差的性质可以利用和的性质导出。因此,只要能够证明baba对于任意实数都成立即可。我们将在下面的例题中研究它的证明。现在请同学们讨论一个问题:设a为实数,a和a哪个大?显然aa,当且仅当0a时等号成立(即在0a时,等号成立。在0a时,等号不成立)。同样,.aa当且仅当0a时,等号成立。含有绝对值的不等式的证明中,常常利用aa、aa及绝对值的和的性质。二、典型例题:例1、证明(1)baba,(2)baba。证明(1)如果,0ba那么.baba所以.bababa如果,0ba那么).(baba所以babababa)()((2)根据(1)的结果,有bbabba,就是,abba。所以,baba。例2、证明bababa。例3、证明cbcaba。思考:如何利用数轴给出例3的几何解释?(设A,B,C为数轴上的3个点,分别表示数a,b,c,则线段.CBACAB当且仅当C在A,B之间时,等号成立。这就是上面的例3。特别的,取c=0(即C为原点),就得到例2的后半部分。)探究:试利用绝对值的几何意义,给出不等式baba的几何解释?含有绝对值的不等式常常相加减,得到较为复杂的不等式,这就需要利用例1,例2和例3的结果来证明。例4、已知2,2cbycax,求证.)()(cbayx证明)()()()(byaxbayxbyax(1)2,2cbycax,∴cccbyax22(2)由(1),(2)得:cbayx)()(例5、已知.6,4ayax求证:ayx32。证明6,4ayax,∴23,22ayax,由例1及上式,aaayxyx223232。注意:在推理比较简单时,我们常常将几个不等式连在一起写。但这种写法,只能用于不等号方向相同的不等式。三、小结:四、练习:1、已知.2,2cbBcaA求证:cbaBA)()(。2、已知.6,4cbycax求证:cbayx3232。五、作业:链接:不等式的图形借助图形的直观性来研究不等式的问题,是学习不等式的一个重要方法,特别是利用绝对值和绝对值不等式的几何意义来解不等式或者证明不等式,往往能使问题变得直观明了,帮助我们迅速而准确地寻找到问题的答案。关键是在遇到相关问题时,能否准确地把握不等式的图形,从而有效地解决问题。我们再来通过几个具体问题体会不等式图形的作用。1.解不等式121xxx。题意即是在数轴上找出到11与22的距离之和不大于到点13的距离的所有流动点x。首先在数轴上找到点11,22,13(如图)。31x122xx-10123从图上判断,在1与2之间的一切点显示都合乎要求。事实上,这种点到1与2的距离和正好是1,而到3的距离是)21(1)1(2xxx。现在让流动点x由点1向左移动,这样它到点3的距离变,而到点1与2的距离增大,显然,合乎要求的点只能是介于13与11之间的某一个点1x。由),1()2()1(111xxx可得.321x再让流动点x由点2向右移动,虽然这种点到1与2的距离的和及到3的距离和都在增加,但两相比较,到1与2的距离的和增加的要快。所以,要使这种点合乎要求,也只能流动到某一点2x而止。由),1()2()1(222xxx可得.42x从而不等式的解为.432x2.画出不等式1yx的图形,并指出其解的范围。先考虑不等式在平面直角坐标系内第一象限的情况。在第一象限内不等式等价于:0x,0y,1yx.其图形是由第一象限中直线xy1下方的点所组成。同样可画出二、三、四象限的情况。从而得到不等式1yx的图形是以原点O为中心,四个等点分别在坐标轴上的正方形。不等式解的范围一目了然。探究:利用不等式的图形解不等式1.111xx;2..12yxA组(1)scbaCBA)()(;(2).)()scbaCBA6.已知.,ayax求证:.axy7.已知.0,cychx求证:.hyxB组*****8.求证.111bbaababa*****9.已知.1,1ba求证:.11abba10.若,为任意实数,c为正数,求证:.)11()1(222cc(2222,而2112222cccc)