高考数学 数列典型例题选讲

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

樊战胜资料答疑电话:15129092181第1页共28页数列典型例题选讲1.已知数列}{na为正项等比数列,n2n53ab32a8alog,,(1)求na的通项公式;(2)设}{nb的前n项和为nS,求nS【解析】2253(1)328,2aaqqq由3322(2)log2(1)2nnnnnnaaqbnnnS2.设数列{}na的前n项和为,nS已知11,a142nnSa(I)设12nnnbaa,证明数列{}nb是等比数列(II)求数列{}na的通项公式.【解析】(I)由11,a及142nnSa,有12142,aaa21121325,23aabaa由142nnSa,...①则当2n时,有142nnSa.....②②-①得111144,22(2)nnnnnnnaaaaaaa又12nnnbaa,12nnbb{}nb是首项13b,公比为2的等比数列.(II)由(I)可得11232nnnnbaa,113224nnnnaa数列{}2nna是首项为12,公差为34的等比数列.1331(1)22444nnann,2(31)2nnan3.已知等比数列{}na中,13,a481a*()nN.(Ⅰ)若{}nb为等差数列,且满足2152,baba,求数列{}nb的通项公式;(Ⅱ)若数列{}nb满足3lognnba,求数列11nnbb的前n项和nT.【解析】(Ⅰ)在等比数列{}na中,13,a481a.所以,由341aaq得3813q,即327q,3q樊战胜资料答疑电话:15129092181第2页共28页因此,1333nnna在等差数列{}nb中,根据题意,21523,9baba可得,52932523bbd所以,2(2)3(2)221nbbndnn(Ⅱ)若数列{}nb满足3lognnba,则3log3nnbn,因此有122311111111122334(1)nnbbbbbbnn1111111(1)()()()223341nn1111nnn4.设数列{}na的前n项和为nS,满足1nnStSn(2n,*nN,t为常数),且11a.(Ⅰ)当2t时,求2a和3a;(Ⅱ)若{1}na是等比数列,求t的值;(Ⅲ)求nS.【解析】解法一(Ⅰ)当2n时,1nnStSn,当3n时,121nnStSn,两式相减得11nnata(*)(3)n2n时,212StS,得1212aata因为11a,得211ata,故11nnata(*)(2)n因为2t,所以21213aa,32217aa(Ⅱ)由(*)可知112nnata(2n),若{1}na是等比数列,则1231,1,1aaa成等比数列即2213(1)(1)(1)aaa因为212312,12,12aatatt,所以22(2)2(2)ttt即220tt,所以0t或2t.经检验,符合题意(Ⅲ)由(*)可知2121221(1)111nnnnnnatattatatttt(2n)当1t时,1111nnan个,此时,12(1)122nnnnSaaan当1t时,11nntat,此时,12nnSaaa211111ntttt2(1)(1)(1)1ntttt(1)11nttntt12(1)(1)nttntt所以12(1)(1)2(1)(1)(1)nnnntSttnttt解法二(Ⅰ)因为2t及1nnStSn,得12nnSSn所以121()22aaa且11a,解得23a樊战胜资料答疑电话:15129092181第3页共28页同理12312()2()3aaaaa,解得37a(Ⅱ)当3n时,1nnStSn,得121nnStSn,两式相减得11nnata(**)即112nnata当t=0时,12na,显然{1}na是等比数列当0t时,令112nnnbata,可得12nnbtbt因为{1}na是等比数列,所以{}nb为等比数列,当2n时,211nnnbbb恒成立,即2(2)[(2)]nnnbttbtbt恒成立,化简得2(2)(1)(2)0nttbt恒成立,即2(2)(1)0(2)0ttt,解得2t,综合上述,0t或2t(Ⅲ)当1t时,由(**)得11nnaa数列{}na是以1为首项,1为公差的等差数列,所以(1)122nnnSn当1t时,由(**)得11nnata,设1()nnaktak(k为常数)整理得1(1)nnatatk,显然11kt所以111()11nnatatt,即数列1{}1nat是以111t为首项,t为公比的等比数列所以111(1)11nnattt,即1111nntattt所以122(1)(1)(1)111(1)1(1)nnnnttnttnttnttSttttt所以12(1)(1)2(1)(1)(1)nnnntSttnttt5.已知数列na的前n项和为nS,且满足n2nnaS,(1,2,3,.....)n(I)求321,,aaa的值;(II)求证数列}1{na是等比数列;(III)若nnbna,求数列nb的前n项和nT.【解析】(I)因为n2nnaS,令1n,解得,11a樊战胜资料答疑电话:15129092181第4页共28页再分别令3,2nn,解得233,7aa(II)因为naSnn2,所以)1(211naSnn,(1,)nnN两个代数式相减得到121nnaa所以)(1211nnaa,(1,)nnN又因为211a,所以}1{na构成首项为2,公比为2的等比数列(III)因为}1{na构成首项为2,公比为2的等比数列,所以nna21,所以12nna因为nnnab,所以nnbnn2所以)...21(22)1(......2322211321nnnTnnn令1231122232...(1)22(1)nnnHnn23412122232...(1)22(2)nnnHnn123111212(1)(2)222...222(1)2212nnnnnnHnnn()得:因此12)1(2nnnH所以.2)1(2)1(21nnnTnn6.已知)0(3,2)(,xxfx成等差数列.又数列,3,)0}({1aaann中此数列的前n项的和Sn(Nn)对所有大于1的正整数n都有)(1nnSfS.(1)求数列}{na的第n+1项;(2)若nnnaab1,11是的等比中项,且Tn为{bn}的前n项和,求Tn.【解析】(1))0(3,2)(,xxfx成等差数列,∴322)(xxf∴.)3()(2xxf∵2111)3()(),2(),(nnnnnSSfSnSfS,∴,3,311nnnnSSSS∴{nS}是以3为公差的等差数列.樊战胜资料答疑电话:15129092181第5页共28页∵nnnSSaSan33333)1(,3,31111,∴).(32NnnSn∴.363)1(32211nnnSSannn(2)∵数列nnnaab1,11是的等比中项,∴,11)(12nnnaab∴).121121(181)12(3)12(3111nnnnaabnnn).1211(181)]121121()5131()311[(18121nnnbbbTnn7.设数列{}nb的前n项和为nS,且22nnbS;数列{}na为等差数列,且514,a720a。(1)求数列{}nb的通项公式;(2)若(1,2,3),nnnncabnT…为数列{}nc的前n项和,求证72nT。【解析】(1)由11111222,1,22,,3nnbSnbSSbb令则又所以2122111222(),9222,2()213nnnnnnnnnbbbbnbSbbSSbbb则当时,由可得即12112333nnnbbb所以是以为首项,为公比的等比数列,于是(2)数列{}na为等差数列,公差751()3,312ndaaan可得从而12(31)3nnnncabn2323123111112[258(31)],3333111112[25(34)(31)]333332111112[3333(31)]3333333nnnnnnnnTnTnndTn………从而1771722332nnnnT8.在数列{}na中,11111,(1)2nnnnaaan(1)设nnabn,求数列{}nb的通项公式(2)求数列{}na的前n项和nS樊战胜资料答疑电话:15129092181第6页共28页【解析】(I)由已知有1112nnnaann112nnnbb利用累差迭加即可求出数列{}nb的通项公式1122nnb(*nN)(II)由(I)知122nnnan,nS=11(2)2nkkkk111(2)2nnkkkkk而1(2)(1)nkknn,又112nkkk是一个典型的错位相减法模型,易得1112422nknkknnS=(1)nn1242nn9.2a,5a是方程2x02712x的两根,数列na是公差为正的等差数列,数列nb的前n项和为nT,且nT211nbNn(1)求数列na,nb的通项公式;(2)记nc=nanb,求数列nc的前n项和nS.【解析】(1)由27,125252aaaa.且0d得9,352aa2325aad,11aNnnan12在nnbT211中,令,1n得.321b当2n时,Tn=,211nb11211nnbT,两式相减得nnnbbb21211,2311nbbnnNnbnnn3231321(2)nnnnnc3243212,nnnS312353331232,132312332333123nnnnnS,132312313131231232nnnnS=21131231131191231nnn=11344343123131312nnnnn,樊战胜资料答疑电话:15129092181第7页共28页nnnS322210.已知数列na的前n项和为nS,且na是nS与2的等差中项,数列nb中,11b,点1,n

1 / 28
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功