★形成性考核作业★1离散数学作业3离散数学集合论部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次形考书面作业是第一次作业,大家要认真及时地完成集合论部分的综合练习作业。要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求2010年11月7日前完成并上交任课教师(不收电子稿)。并在03任务界面下方点击“保存”和“交卷”按钮,完成并上交任课教师。一、填空题1.设集合{1,2,3},{1,2}AB,则P(A)-P(B)={{3},{1,2,3},{1,3},{2,3}},AB={1,1,1,2,2,1,2,2,3,1,3,2}.2.设集合A有10个元素,那么A的幂集合P(A)的元素个数为1024.3.设集合A={0,1,2,3},B={2,3,4,5},R是A到B的二元关系,},,{BAyxByAxyxR且且则R的有序对集合为{2,2,2,3,3,2},3,3.4.设集合A={1,2,3,4},B={6,8,12},A到B的二元关系R=},,2,{ByAxxyyx那么R-1={6,3,8,4}5.设集合A={a,b,c,d},A上的二元关系R={a,b,b,a,b,c,c,d},则R具有的性质是反自反性,反对称性.6.设集合A={a,b,c,d},A上的二元关系R={a,a,b,b,b,c,c,d},若在R中再增加两个元素c,b,d,c,则新得到的关系就具有对称性.7.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有2个.8.设A={1,2}上的二元关系为R={x,y|xA,yA,x+y=10},则R的自反闭包为{1,1,2,2}.9.设R是集合A上的等价关系,且1,2,3是A中的元素,则R中至少包含1,1,2,2,3,3等元素.10.设集合A={1,2},B={a,b},那么集合A到B的双射函数是{1,a,2,b},或{1,b,2,a}姓名:学号:得分:教师签名:★形成性考核作业★2二、判断说明题(判断下列各题,并说明理由.)1.若集合A={1,2,3}上的二元关系R={1,1,2,2,1,2},则(1)R是自反的关系;(2)R是对称的关系.(1)R不是自反关系,因为没有有序对3,3.(2)R不是对称关系,因为没有有序对2,12.如果R1和R2是A上的自反关系,判断结论:“R-11、R1∪R2、R1∩R2是自反的”是否成立?并说明理由.解:成立.因为R1和R2是A上的自反关系,即IAR1,IAR2。由逆关系定义和IAR1,得IAR1-1;由IAR1,IAR2,得IAR1∪R2,IAR1R2。所以,R1-1、R1∪R2、R1R2是自反的。3.若偏序集A,R的哈斯图如图一所示,则集合A的最大元为a,最小元不存在.错误.集合A的最大元不存在,a是极大元.abcd图一gefh★形成性考核作业★34.设集合A={1,2,3,4},B={2,4,6,8},,判断下列关系f是否构成函数f:BA,并说明理由.(1)f={1,4,2,2,,4,6,1,8};(2)f={1,6,3,4,2,2};(3)f={1,8,2,6,3,4,4,2,}.解:(1)f不能构成函数.因为A中的元素3在f中没有出现.(2)f不能构成函数.因为A中的元素4在f中没有出现.(3)f可以构成函数.因为f的定义域就是A,且A中的每一个元素都有B中的唯一一个元素与其对应,满足函数定义的条件.三、计算题1.设}4,2{},5,2,1{},4,1{},5,4,3,2,1{CBAE,求:(1)(AB)~C;(2)(AB)-(BA)(3)P(A)-P(C);(4)AB.解:(1)因为A∩B={1,4}∩{1,2,5}={1},~C={1,2,3,4,5}-{2,4}={1,3,5}所以(A∩B)~C={1}{1,3,5}={1,3,5}(2)(AB)-(BA)={1,2,4,5}-{1}={2,4,5}(3)因为P(A)={,{1},{4},{1,4}}P(C)={,{2},{4},{2,4}}所以P(A)-P(C)={,{1},{4},{1,4}}-{,{2},{4},{2,4}}(4)因为AB={1,2,4,5},AB={1}所以AB=AB-AB={1,2,4,5}-{1}={2,4,5}★形成性考核作业★42.设A={{1},{2},1,2},B={1,2,{1,2}},试计算(1)(AB);(2)(A∩B);(3)A×B.(1)AB={{1},{2}}(2)A∩B={1,2}(3)A×B={{1},1,{1},2,{1},{1,2},{2},1,{2},2,{2},{1,2},1,1,1,2,1,{1,2},2,1,2,2,2,{1,2}}3.设A={1,2,3,4,5},R={x,y|xA,yA且x+y4},S={x,y|xA,yA且x+y0},试求R,S,RS,SR,R-1,S-1,r(S),s(R).解:R={1,1,1,2,1,3,2,1,2,2,3,1},\R-1={1,1,2,1,3,1,1,2,2,2,1,3}S=,S-1=r(S)={1,1,2,2,3,3,4,4,5,5}s(R)={1,1,1,2,1,3,2,1,2,2,3,1}RS=SR=4.设A={1,2,3,4,5,6,7,8},R是A上的整除关系,B={2,4,6}.★形成性考核作业★5(1)写出关系R的表示式;(2)画出关系R的哈斯图;(3)求出集合B的最大元、最小元.解:R={1,1,1,2,1,3,1,4,1,5,1,6,1,7,1,8,2,2,2,4,2,6,2,8,3,3,3,6,4,4,4,8,5,5,6,6,7,7,8,8}(2)关系R的哈斯图如图四(3)集合B没有最大元,最小元是:2四、证明题1.试证明集合等式:A(BC)=(AB)(AC).证明:设,若x∈A(BC),则x∈A或x∈BC,即x∈A或x∈B且x∈A或x∈C.即x∈AB且x∈AC,即x∈T=(AB)(AC),所以A(BC)(AB)(AC).反之,若x∈(AB)(AC),则x∈AB且x∈AC,即x∈A或x∈B且x∈A或x∈C,即x∈A或x∈BC,即x∈A(BC),所以(AB)(AC)A(BC).因此.A(BC)=(AB)(AC).2.试证明集合等式A(BC)=(AB)(AC).证明:设S=A∩(B∪C),T=(A∩B)∪(A∩C),若x∈S,则x∈A且x∈B∪C,即x∈A且x∈B或x∈A且x∈C,也即x∈A∩B或x∈A∩C,即x∈T,所以ST.反之,若x∈T,则x∈A∩B或x∈A∩C,即x∈A且x∈B或x∈A且x∈C也即x∈A且x∈B∪C,即x∈S,所以TS.因此T=S.12357图四:关系R的哈斯图★形成性考核作业★63.对任意三个集合A,B和C,试证明:若AB=AC,且A,则B=C.证明:设xA,yB,则x,yAB,因为AB=AC,故x,yAC,则有yC,所以BC.设xA,zC,则x,zAC,因为AB=AC,故x,zAB,则有zB,所以CB.故得A=B.4.试证明:若R与S是集合A上的自反关系,则R∩S也是集合A上的自反关系.