13邱关源第五版电路习题解答(全)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

Circuitexercise电路习题解答Circuitexercise1-1(题目略)解:(1)当流过元件的电流的参考方向与元件两端电压降落的方向一致时,称电压电流的参考方向关联。因此图(a)是关联,图(b)为非关联。(2)当u、i方向为关联方向时,定义p=ui为吸收的功率;当取元件的u、i参考方向为非关联时,定义p=ui为元件发出功率。因此图(a)中的ui表示元件吸收的功率,图(b)中ui表示元件发出的功率。(3)关联条件下,P0,元件吸收功率,P0,发出功率;非关联条件下,P0,元件发出功率,P0,吸收功率。图(a)中,ui为关联方向,p0,表示元件实际发出功率;图(b)中,ui为非关联方向,p0,表示元件实际发出功率。元件+_u(a)元件+_u(b)Circuitexercise1-3(题目略)解:即元件A发出的总功率等于元件吸收的总功率。满足功率平衡。+_5A60VA+_1A60VB+_2AC60VD+_2AE20V40V2APA=605=300W0,为发出功率;PB=601=60W0,为吸收功率;PC=602=120W0,为吸收功率;PD=402=80W0,为吸收功率;PE=202=40W0,为吸收功率;总吸收功率P=PB+PC+PD+PE=300W元件A的电压电流为非参考方向,其余为关联方向。Circuitexercise1-4(题目略)解:(a)图为线性电阻,其u、i为非关联方向,其约束方程为:u=-Ri=-10103i。i+_u10k(a)i+_u20mH(b)i+_u10F(c)i+_u5V(d)+_i+_u2A(e)(b)图为线性电感,其u、i为非关联方向,其约束方程为:u=-L(di/dt)=-2010-3(di/dt)。(c)图为线性电容,其u、i为关联方向,其约束方程为:i=c(du/dt)=1010-6(du/dt)。(d)图为理想电压源,参考极性与实际相反,其约束方程为:u=-5V。(e)图为理想电流源,参考方向与实际相同,其约束方程为:i=2A。Circuitexercise1-5(题目略)diCtututtccc010本题中电容电流i(t)的函数表达式为:21020500ttttti将i(t)代入积分式(注意积分的上下限):i+_u2FO12345i/At/s10-10解:已知电容电流求电压,用电容伏安关系积分形式:Circuitexercise当t=1s时,V.tdttdttiCuuccc251252152101011021010当t=2s时,VtdttdttiCuuccc5252152101022022020当t=2s时,也可把当t=1s时的值作为其初始值,即:Vdtt.dttiCuuccc55212511122121Circuitexercise当t=4s时,因t=2s时电流的值发生改变,所以把t=2s时的值作为其初始值:VtdtdttiCuuccc51021510215124424242本题的要点:1)在计算电容电压时,要关注它的初始值,即初始状态时的值。2)已知的电流是时间的分段函数,电压也是时间的分段函数。Circuitexercise1-8(题目略)解:电压u(t)的函数表达式为:(1)求电流:根据u、i的微分关系:i+_u2FO12345u/Vt/ms2tu0103t4-103t0t00t2ms2t4ms4tdttduCti得电流表达式:dttduti61020210-30t00t2ms2t4ms4t-210-3Circuitexercise电压u(t)的函数表达式为:(2)求电荷:根据库伏特性:i+_u2FO12345u/Vt/ms2tu0103t4-103t0t00t2ms2t4ms4tmstCutq得电荷表达式:tutq61020210-3t0t00t2ms2t4ms4tms210-6(4-103t)Circuitexercise电压u(t)的函数表达式为:(3)求功率:根据功率公式:i+_u2FO12345u/Vt/ms2tu0103t4-103t0t00t2ms2t4ms4tmstutitp电流i为:tp02t0t00t2ms2t4ms4tms-210-3(4-103t)ti0210-30t00t2ms2t4ms4t-210-3得功率表达式:Circuitexercise1-10(题目略)解:图(a):Ai2510i1+_uS65abi0.9i1+_10V(a)2A+_u1520abi0.05u1(b)_+3Vc电流i为:即受控源电流为:A.iAii.90229011V.i.iiuabab8990904411Circuitexercise解:图(b):VVu10521i1+_uS65abi0.9i1+_10V(a)2A+_u1520abi0.05u1(b)_+3Vc电流u1为:即受控源电流为:A.u.i500501Viuac1020Vuca10或Vuab3而VVVuuuabcacb13310故Circuitexercise4A3A6A2A-10AR1R3R2ABC1-12(题目略)解:设定电流i1、i2、i3、i4、i5如图示。(1)R1、R2、R3值不定,i1、i2、i3不能确定。对所选的闭合面列KCL方程得:AAi16434i4i5i1i3i2对A点列KCL方程得:Aii1310245Circuitexercise4A3A6A2A-10AR1R3R2ABC解:(2)R1=R2=R3,对回路列KVL方程,对B点、C点列KCL方程:0332211iRiRiRi4i5i1i3i2213ii432ii将R1=R2=R3代入,解得Ai3101Ai312Ai3113i4、i5的值同(1):Ai14Ai135Circuitexercise1-20(题目略)解:在图(a)中设电流i,右边网孔的KVL方程为:108822iii+_uS228A10V(a)50i11ab+_2V2u+_3i3i288+_u(b)解得:A.i0910VV.iu809108888则:在图(b)中设电流i1、i2、i3,8321iiiKVL方程:a结点的KCL方程为:2131223ii,ii求解上述方程得:Ai23Viu633注:列KVL方程时应尽量选取没有电流源的回路。Circuitexercise2-4(题目略)解:(a):图中R4被短路,应用电阻的串并联,有:445321.R]RRR[Rab所以:R1(a)abR2R3R4R5(b)abG2R3G1R4(b):图中G1、G2支路的电阻为:21121GGR334RRRRabCircuitexercise(c):这是一个电桥电路,由于R1=R2,R3=R4,处于电桥平衡,故开关打开与闭合时的等效电阻相等。514321.RRRRRab(d):这是一个电桥电路,处于电桥平衡,1与1’同电位,之间的电阻R2可以去掉(也可以短路)。故5012121.RRRRRRabR1(c)abR2R3R4R5SR1(d)abR2R1R1R2R211’Circuitexercise(e):这是一个对称电路,结点1与1’等电位,2与2’等电位,3、3’、3”等电位,可以分别把等电位点短接,短接后的电路如图e’所示。则323422RRRRabab(e)RRRRRRRRRRRR11’22’33’3”a(e’)RRbRRRRRRRRRRRCircuitexercise(f):图中(1,1,2)和(2,2,1)构成两个Y形连接,分别将两个Y形转换成形连接,如图f’所示。设(1,1,2)转换后的电阻为R1、R2、R3,(2,2,1)转换后的电阻为R1’、R2’、R3’,则52211111.Rab(f)1112222ab(f’)R1R1’2R2R3R2’R3’5121212R5112123R8122221R4221212R4221213RCircuitexercise并接两个形,得到等效电阻:26914585245221221133..RRRRRRR'''abab(f)1112222ab(f’)R1R1’2R2R3R2’R3’Circuitexercise(g):这是一个对称电路。由对称性知,节点1,1’,1”等电位,节点1,2’,2”等电位,连接等电位点,得到图(g’)。则667165363.RRRRRaba(g’)bRRRRRRRRRRRRab1RRRRRRRRRRRR1’1”22’2”(g)Circuitexercise把(10,10,5)构成的形等效变换为Y形,如图(b)所示。其中各电阻的值为45101010101R4(a)ab+_Uab+_U5A101065245A4(b)ab+_Uab+_U624R1R2R3I1I2解:2510105102R2510105103R2-8如图(a),求U和Uab。两条支路的电阻均为10,因此两条支路的电流:I1=I2=5/2=2.5A应用KVL得:V..U5524526入端电阻302422644abR所以VRUabab1505305CircuitexerciseA..i25010521410V244+++___1A10V6V1010i4244+_1010i2.5A4V1A3A(a)(b)解:91+_6.5A4V(d)i110i4V(c)41+_106.5Ai110+_2.5Vi12-11求i。A.ii1250211(e)Circuitexercise解:2-15求RinR11(a)R2Rini11’i1(a):在1,1’端子间加电压源u,设电流i,,如图(a’)所示。根据KCL,有:0211Ruiii而:11Rui由此可得:0121RuiRu解得输入电阻:12121RRRRiuRinR1(a’)R2i1i1+_uiCircuitexercise2-15求Rin解:(b):在1,1’端子间加电压源u,设电流i,,如图(b’)所示。根据KVL,有:uu1由KCL得:231Ruii联立求解上式得:13311RRRRiuRin111111uiRuiRu(b)R21R1Rini11’+_u1+_u1R3(b’)R2R1i1+_u1+_u1R3_+ui1iCircuitexercise解:(1)按标准支路:图(a)中,n=6,b=11;独立的KCL:n-1=5;KVL:b-n+1=6图(b)中,n=7,b=12;独立的KCL:n-1=6;KVL:b-n+1=6_+_++__++_(a)(b)3-2(1)按标准支路;(2)按电源合并支路,求KCL、KVL独立方程数。(2)按电源合并支路:图(a)中,n=4,b=8;独立的KCL:n-

1 / 180
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功