邵阳学院毕业设计论文I摘要级联型多电平变频器输出电压谐波含量小,易于实现模块化,适用于高压大功率场合,本文主要针对七电平H桥级联型逆变器的拓扑结构和控制方式的相关问题进行分析与研究。级联个数不同,对控制方法也有不同的要求。分别对载波层叠调制和载波移相调制方法进行了相关仿真研究。验证了两种方法的正确性,同时也对相关量的谐波进行了分析。多电平逆变器现在主要应用于高压大功率的交流电动机的变频调速、直流输电和电能质量综合治理以及超导储能的上面,感应加热以及大功率的不间断电源(UPS)等这些领域;同时也在清洁能源的利用上面也起到了非常重要的作用,比如风力发电和太阳能发电就可以通过高压多电平逆变器来入网。在我国的国民经济高速发展的今天,这样的多电平逆变器已经应用到了各个领域,有着非常广阔的应用前景。关键词:H桥级联;七电平;载波层叠;载波移相邵阳学院毕业设计论文IIAbstractCascadedmultilevelinverteroutputvoltageharmoniccontentofsmall,easytoimplementmodular,suitableforhigh-powersituations,thepaperfocusedontheseven-levelcascadedH-bridgeinvertertopologyandcontrolrelatedissuesanalysisandresearch.Differentcascadenumberofcontrolmethodshavedifferentrequirements.Werestackedonthecarriermodulationandcarrierphaseshiftmodulationmethodsrelatedsimulation.TwomethodstoverifythecorrectResistance,butalsoontheamountofcorrelationoftheharmonicanalysis.Multi-levelinverterisnowmainlyusedinhigh-voltagepowerinverterACmotor,DCpowertransmissionandpowerqualitymanagementandSMESabove,inductionheating,anduninterruptiblepowersupply(UPS),etc.Thesefield;whiletakingadvantageoftheabovearealsocleanenergyalsoplaysaveryimportantrole,suchaswindpowerandsolarpowercanbehigh-pressuremulti-levelinverterthroughtothenet.IntherapiddevelopmentofChina'seconomytoday,suchamulti-levelinverterhasbeenappliedtovariousfields,hasaverybroadapplicationprospects.Keywords:H-bridgecascade;sevenlevels;carrierdisposition;carrierphaseshift邵阳学院毕业设计论文目录摘要·················································································IAbstract·············································································II1绪论···············································································11.1多电平逆变器产生背景·····················································11.2多电平逆变器的研究现状···················································21.3本文的主要内容···························································102级联H桥工作原理···························································112.1单个H桥工作原理························································112.2多个级联H桥拓扑结构的数学模型······································122.3单元级联型多电平逆变器的调制控制方法······························142.4载波SPWM的采样方式····························································203MATLAB的特点和优势····················································233.1MATLAB的组成··························································233.2MATLA与图象处理··································································243.3MATLAB特点与优势································································244级联H桥七电平逆变器仿真分析·········································264.1级联式多电平逆变器PWM调制技术········································264.2H桥单元模型···········································································274.3载波发生器设置方法··································································284.4调制波的设置··········································································304.5七电平的级联型逆变器的仿真模型················304.6仿真结果分析························315总结··············································································33参考文献.....................................................................................................35致谢················································································37邵阳学院毕业设计论文11绪论1.1多电平逆变器产生背景目前多电平变换技术越来越得到广泛应用,已经成为电力电子技术的一个热点,由于大功率电力电子器件的耐压值和电流值不能满足应用要求,通过多电平的方式进行分压的方式来减少各个功率器件的工作电压和电流,从而延长各个功率器件的使用寿命,基于多电平技术拥有很多特有的优势得到很多人的关注。传统的两电平拓扑结构电压型逆变器器难以实现现在人们对功率大,电压高和频率高的急切的需求。例如10KV/1MW的高压级联型变频器无法用一个两电平的拓扑结构来实现其功能。如果使用更大容量功率器件,大容量就意味着价格高成本大,设计者都想花最少的钱来实现更高的性能,所以想在现有小功率的元件的基础下,只是换一种新的电路结构和调制方式,就可以实现高频率的大电压大功率变换。随着半导体电力电子开关器件的发展和相关技术的进步,多电平逆变技术已逐步趋向成熟,并慢慢地得到了认识与认可,尤其是目前的电机控制方面,已越来越广泛地应用在电力、石油石化、冶金、矿山、水泥制造、市政供水、污水处理、造纸等行业。在电力系统FACTS技术、超导储能和高压电机变频驱动等领域,想要实现高压大功率变换就要高开关频率低EMI,如果在原有的电力电子器件不变的情况下,只能从拓扑结构和控制方法上寻求解决方案。多电平功率变换技术是一种比较理想的解决方案,近20年来得到了广泛关注、研究和应用。L电平逆变器,有几点优势:每个开关管仅是母线电压l/(L一1),用几个低电压开关管组合就能完成大功率大电压电路还不需要均压电路。电平数l值越大,输出电压波形越接近正弦波,电压波形畸变就越小。在得到同的输出电压波形时,用较低的开关频率比高开关频率下要好,低开关频率也就意味着损耗小效率高。在一样的电压条件下,电平数L越大,每个开关管的电压就越小,每个开关管的dv/dt就越小。联型多电平逆变器是目前应用得最为广泛、最为成熟的一种逆变器的拓扑结构。级联型拓扑最早由R.H.Baker等人于1975提出并申请了专利,但该专利技术在此后的很多年都没有得到推广应用。最早出现在市场的单元级联型拓扑结构的变频器是美国西屋电气公司的基于晶闸管的逆变器,该公司于1986年对单元级联型变频器技术申请了专利,该发明提出高压逆变系统可由独立的标准低压功率单元串联形成。西屋公司的发明在高压变频器的发展上具有重大意义,解决了器件耐压不足的问题,奠定了单元级联型多电平逆变器的基础[1]。在美国罗宾康公司于1997年申请的专利号为邵阳学院毕业设计论文25625545的美国专利中,首次在单元级联型高压变频器中采用性能优越的IGBT器件,并首次提出输入采用多重化移相变压器和输出采用多电平移相式PWM的单元串联多电平方案,大大降低了高压逆变器输入输出谐波,被称为完美无谐波高压逆变器[2]。经过二三十年的发展,单元级联型多电平变频器的主电路拓扑和总体控制策略已基本成熟,但在可靠性、寿命、成本、控制性能等方面仍有较大的发展空间[3]。级联型多电平电路是多电平电路拓扑结构的一种,虽然得到很大发展,但还有很多问题有待解决,在理论和技术上都存在很大的研究空间。如复杂的拓扑结构,将导致变频装置体积很大、造价昂贵,这个问题已成为阻碍级联型多电平进一步发展的主要因素;控制方法很多都是载波调制的PWM方法,它的高动态性能的控制策略成熟度是还远不如两电平电路。对级联型多电平技术更近一步地研究七电平级联逆变器研究及载波移相实现开发是非常有必要地而且实用性很强。多电平逆变器的概况多电平变换器最早引起研究者的兴趣是在1980年,口本长冈科技大学的A.Nabae等人提出了中性点钳位型(NeutralPointClamped-NPC)的三电平电路结构。其基本思想是通过一定的主电路拓扑结构获得多级阶梯波形输出来等效正弦波。由于多电平变换器对功率器件和控制电路要求都很高,最初并未受到太多关注。直到90年代,随着GTO,IGBT的成熟应用和IGCT,IEGT等新型全控型器件的先后出现,以及以DSP为核心的高性能数字控制技术的普及,多电平变换器的研究和应用才有了迅猛发展。经过二十多年的不断发展,理论研究和拓扑结构出现了多个分支,目前为止所见到的多电平逆变器,按主电路拓扑结构来分,主要分为三种基本的拓扑结构二极管箝位型