独立性检验的基本思想及其初步应用-PPT

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

独立性检验的基本思想及其初步应用湾里一中徐周钰定量变量的取值一定是实数,它们的取值大小有特定的含义,不同取值之间的运算也有特定的含义.如身高、体重、考试成绩、温度等等.变量定量变量分类变量例如身高、体重、考试成绩等,张明的身高是180cm,李立的身高是175cm,说明张明比李立高180-175=5(cm).两个定量变量的相关关系分析:回归分析(画散点图、相关系数r、相关指数R2、残差分析)对于性别变量,其取值为男和女两种,这种变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量.在日常生活中,主要考虑分类变量之间是否有关系:如是否吸烟、宗教信仰、是否患肺癌、国籍等等.例如,吸烟是否与患肺癌有关系?性别是否对于喜欢数学课程有影响?等等.分类变量也称为属性变量或定性变量,它们的取值一定是离散的,而且不同的取值仅表示个体所属的类别,如性别变量,只取男、女两个值,商品的等级变量只取一级、二级、三级等等.有时也可以把分类变量的不同取值用数字来表示,但这时的数字除了分类以外没有其他的含义,例如用0表示“男”,1表示“女”,性别变量就变成取值为0和1的随机变量,但是这些数字没有其他的含义.此时比较性别变量的两个不同值之间的大小没有意义,性别变量的均值和方差也没有意义.两个分类变量的相关关系的分析:通过图形直观判断两个分类变量是否相关;独立性检验.由列联表可以粗略估计出,在不吸烟者中,有0.54%患有肺癌;在吸烟者中,有2.28%患有肺癌。因此,直观上可以得到结论:吸烟者和不吸烟者患肺癌的可能性存在差异.与表格相比,三维柱形图和二维条形图能更直观地反映出相关数据的总体状况.为调查吸烟是否对患肺癌有影响,某肿瘤研究所随机地调查了9965人,得到如下结果(单位:人):吸烟与患肺癌列联表(列出两个分类变量的频数表):1、列联表2、三维柱形图3、二维条形图不患肺癌患肺癌吸烟不吸烟不患肺癌患肺癌吸烟不吸烟080007000600050004000300020001000从三维柱形图能清晰看出各个频数的相对大小.从二维条形图能看出,吸烟者中患肺癌的比例高于不患肺癌的比例.不吸烟吸烟00.10.20.30.40.50.60.70.80.91不吸烟吸烟患肺癌比例不患肺癌比例4、等高条形图等高条形图更清晰地表达了两种情况下患肺癌的比例.上面我们通过分析数据和图形,得到的直观印象是吸烟和患肺癌有关,那么事实是否真的如此呢?这需要用统计观点来考察这个问题.现在想要知道能够以多大的把握认为“吸烟与患肺癌有关”,为此先假设:H0:吸烟与患肺癌没有关系把数字用字母代替,得到如下用字母表示的列联表:吸烟与患肺癌的列联表:如果“吸烟与患肺癌没有关系”,则在吸烟者中不患肺癌的比例应该与不吸烟者中相应的比例应差不多,即()()0acacdcabadbcabcd|ad-bc|越小,说明吸烟与患肺癌之间关系越弱;|ad-bc|越大,说明吸烟与患肺癌之间关系越强.以A表示不吸烟,B表示不患肺癌,则a表示事件AB发生的频数;a+b和a+c恰好分别为事件A和B发生的频数.为了使不同样本容量的数据有统一的评判标准,基于上述分析,我们构造一个随机变量若H0成立,即“吸烟与患肺癌没有关系”,则K2应很小.由列联表中数据,利用公式(1)计算得K2的观测值为:22()()()()()nadbcKabcdacbd(1)29965(777549422099)56.632.78172148987491k其中n=a+b+c+d为样本容量.在H0成立的情况下,统计学家估算出如下的概率:2(6.635)0.01PK也就是说,在H0成立的情况下,对随机变量K2进行多次观测,观测值超过6.635的频率约为0.01,是一个小概率事件.现在K2的观测值,远远大于6.635,所以有理由断定H0不成立,即认为“吸烟与患肺癌有关系”56.632k但这种判断会犯错误,犯错误的概率不会超过0.01,即我们有99%的把握认为“吸烟与患肺癌有关系”.利用随机变量K2来确定在多大程度上可以认为“两个分类变量有关系”的方法称为两个分类变量的独立性检验.独立性检验:如果,就判断H0不成立;否则就判断H0成立.6.635k(6.635)0.01Pk独立性检验的基本思想:类似于数学上的反证法,对“两个分类变量有关系”这一结论成立的可信程度的判断:(1)假设该结论不成立,即假设结论“两个分类变量没有关系”成立.(2)在假设条件下,计算构造的随机变量K2,如果有观测数据计算得到的K2很大,则在一定程度上说明假设不合理.(3)根据随机变量K2的含义,可以通过(2)式评价假设不合理的程度,由实际计算出的k6.635,说明假设不合理的程度约为99%,即“两个分类有关系”这一结论成立的可信程度约为99%.一般地,假设有两个分类变量X和Y,它们的可能取值分别为{x1,x2}和{y1,y2},其样本频数列联表(称为2x2列联表)为:若要判断结论为:H1:“X与Y有关系”,可按如下步骤判断H1成立的可能性:1.通过三维柱形图和二维条形图,可以初略地判断两个分类变量是否有关系,但是这种判断无法精确地给出所得结论的可靠程度.(i)在三维柱形图中,主对角线上两个柱形高度的乘积ad与副对角线上的两个柱形高度的乘积bc相差越大,H1成立的可能性就越大.(ii)在二维条形图中,可以估计满足条件X=x1的个体中具有Y=y1的个体所占的比例,也可以估计满足条件X=x2的个体中具有Y=y1的个体所占的比例,两个比例的值相差越大,H1成立的可能性就越大.aabccd利用独立性检验来考察两个分类变量是否有关系,能较精确地给出这种判断的可靠程度.具体作法是:(1)根据实际问题需要的可信程度确定临界值k0;(2)由观测数据计算得到随机变量K2的观测值k;(3)如果k6.635,就以(1-P(K2≥6.635))×100%的把握认为“X与Y有关系”;否则就说样本观测数据没有提供“X与Y有关系”的充分证据.10.8287.8796.6355.0243.8412.7062.0721.3230.7080.445k0.0010.0050.0100.0250.050.100.150.50.400.502()PKk(1)如果k10.828,就有99.9%的把握认为“X与Y有关系”;(2)如果k7.879,就有99.5%的把握认为“X与Y有关系”;(3)如果k6.635,就有99%的把握认为“X与Y有关系”;(4)如果k5.024,就有97.5%的把握认为“X与Y有关系”;(5)如果k3.841,就有95%的把握认为“X与Y有关系”;(6)如果k2.706,就有90%的把握认为“X与Y有关系”;(7)如果k=2.706,就认为没有充分的证据显示“X与Y有关系”.在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不是因为患心脏病而住院的男性病人中有175人秃顶。分别利用图形和独立性检验方法判断秃顶与患心脏病是否有关系?你所得的结论在什么范围内有效?解:根据题目所给数据得到如下列联表:患心脏病患其他病1755972144510100200300400500600患心脏病患其他病秃头不秃头相应的三维柱形图如图所示,比较来说,底面副对角线上两个柱体高度的乘积要大一些,因此可以在某种程度上认为“秃顶与患心脏病有关”.根据列联表中的数据,得到:221437(214597175451)16.3736.635.3891048665772K所以有99%的把握认为“秃顶患心脏病有关”.在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不是因为患心脏病而住院的男性病人中有175人秃顶。分别利用图形和独立性检验方法判断秃顶与患心脏病是否有关系?你所得的结论在什么范围内有效?解:根据题目所给数据得到如下列联表:为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中随机抽取300名学生,得到如下联表:联表性别与喜欢数学课程列联表解:在假设“性别与是否喜欢数学课程之间有关系”的前提下K2应该很小,并且2(3.841)0.05PK由表中数据计算K2的观测值k4.513.在多大程度上可以认为高中生的性别与是否喜欢数学课程之间有关系?为什么?而我们所得到的K2的观测值k4.513超过3.841,这就意味着“性别与是否喜欢数学课程之间有关系”这一结论错误的可能性约为0.05,即有95%的把握认为“性别与是否喜欢数学课程之间有关系”.

1 / 20
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功