-1-七年级下几何证明题训练1.已知:如图11所示,ABC中,C90,D是AB上一点,DE⊥CD于D,交BC于E,且有ACADCE。求证:DECD12C图11ABDE2.已知:如图12所示,在ABC中,AB2,CD是∠C的平分线。求证:BC=AC+ADACBD图12-2-3.已知:如图13所示,过ABC的顶点A,在∠A内任引一射线,过B、C作此射线的垂线BP和CQ。设M为BC的中点。求证:MP=MQBPMQCA图134.ABC中,BACADBC90,于D,求证:ADABACBC14-3-【试题答案】1.证明:取CD的中点F,连结AF3EAD41CBFACADAFCDAFCCDE90又14901390,4312ACCEACFCEDASACFEDDECD()2.分析:本题从已知和图形上看好象比较简单,但一时又不知如何下手,那么在证明一条线段等于两条线段之和时,我们经常采用“截长补短”的手法。“截长”即将长的线段截成两部分,证明这两部分分别和两条短线段相等;“补短”即将一条短线段延长出另一条短线段之长,证明其和等于长的线段。BDCAE证明:延长CA至E,使CE=CB,连结ED在CBD和CED中,-4-CBCEBCDECDCDCDCBDCEDBEBACBBACE22又BACADEEADEEADAEBCCEACAEACAD,3.证明:延长PM交CQ于RQPBMCARCQAPBPAPBPCQPBMRCM,//又BMCMBMPCMR,BPMCRMPMRMQM是RtQPR斜边上的中线MPMQ4.取BC中点E,连结AEABCDEBACAEBC902-5-ADBCADAEBCAEAD,22ABACBCBCABACBCADABACBCADABACBC2414