第七章图像分割讲解内容1.图像分割的概念与方法分类2.边缘检测3.Hough变换检测法4.区域分割5.区域生长6.分裂合并法目的1.掌握图像分割的概念和边缘检测的原理与方法2.掌握Hough变换检测直线原理,了解Hough变换检测曲线方法;3.掌握最简单图像区域分割,了解区域生长和分裂合并法7.1概述图像分析的概念对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息,从而建立对图像的描述图像分析系统的基本构成预处理图像分割特征提取对象识别7.1概述图像分析的步骤把图像分割成不同的区域或把不同的对象分开找出分开的各区域的特征识别图像中要找的对象或对图像进行分类对不同区域进行描述或寻找出不同区域的相互联系,进而找出相似结构或将相关区域连成一个有意义的结构7.1概述图像分割的概念把图像分成互不重叠的区域并提取感兴趣目标的技术图像分割的定义:令集合R代表整个图像区域,对R的分割可看作将R分成N个满足以下五个条件的非空子集(子区域)R1,R2,…,RN:①;②对所有的i和j,i≠j,有Ri∩Rj=φ;③对i=1,2,…,N,有P(Ri)=TRUE;④对i≠j,有P(Ri∪Rj)=FALSE;⑤对i=1,2,…,N,Ri是连通的区域。其中P(Ri)是对所有在集合Ri中元素的逻辑谓词,φ代表空集。RRNii17.1概述图像分割的基本策略分割算法基于灰度值的两个基本特性:不连续性和相似性检测图像像素灰度级的不连续性,找到点、线(宽度为1)、边(不定宽度)。先找边,后确定区域。7.1概述图像分割的基本策略检测图像像素的灰度值的相似性,通过选择阈值,找到灰度值相似的区域,区域的外轮廓就是对象的边7.1概述图像分割的方法基于边缘的分割方法先提取区域边界,再确定边界限定的区域。区域分割确定每个像素的归属区域,从而形成一个区域图。区域生长将属性接近的连通像素聚集成区域分裂-合并分割综合利用前两种方法,既存在图像的划分,又有图像的合并。分割对象分割对象7.2边缘检测算子边缘的定义:图像中像素灰度有阶跃变化或屋顶变化的那些像素的集合边缘的分类阶跃状屋顶状阶跃状屋顶状7.2边缘检测算子基本思想:计算局部微分算子一阶微分截面图边界图像7.2边缘检测算子一阶微分:用梯度算子来计算特点:对于亮的边,边的变化起点是正的,结束是负的(值由大---》小)。对于暗边,结论相反(值由小---》大)。常数部分为零。用途:用于检测图像中边的存在7.2边缘检测算子二阶微分:通过拉普拉斯来计算特点:二阶微分在亮的一边是负的,在暗的一边是正的。常数部分为零。用途:1)二次导数的符号,用于确定边上的像素是在亮的一边,还是暗的一边。2)0跨越,确定边的准确位置7.2边缘检测算子几种常用的边缘检测算子梯度算子Roberts算子Prewitt算子Sobel算子Kirsch算子Laplacian算子Marr算子梯度算子函数f(x,y)在(x,y)处的梯度为一个向量:f=[f/x,f/y]计算这个向量的大小为:G=[(f/x)2+(f/y)2]1/2近似为:G|fx|+|fy|或Gmax(|fx|,|fy|)梯度的方向角为:φ(x,y)=tan-1(fy/fx)可用下图所示的模板表示-111-1为了检测边缘点,选取适当的阈值T,对梯度图像进行二值化,则有:这样形成了一幅边缘二值图像g(x,y)特点:仅计算相邻像素的灰度差,对噪声比较敏感,无法抑止噪声的影响。其它0)Grad(1),(Tx,yyxgRoberts算子公式:模板:特点:与梯度算子检测边缘的方法类似,对噪声敏感,但效果较梯度算子略好)1,1()1,1()1,1()1,1(yxfyxffyxfyxffyx-11fx’1-1fy’Prewitt算子公式模板:特点:在检测边缘的同时,能抑止噪声的影响0-110-110-11-1-1-1000111)1,1()1,()1,1()1,1()1,()1,1()1,1(),1()1,1()1,1(),1()1,1(yxfyxfyxfyxfyxfyxffyxfyxfyxfyxfyxfyxffyxSobel算子公式模板特点:对4邻域采用带权方法计算差分能进一步抑止噪声但检测的边缘较宽-220-110-110000-1-1-2112)1,1()1,(2)1,1()1,1()1,(2)1,1()1,1(),1(2)1,1()1,1(),1(2)1,1(yxfyxfyxfyxfyxfyxffyxfyxfyxfyxfyxfyxffyxSobel算子Sobel梯度算子的使用与分析1.直接计算y、x可以检测到边的存在,以及从暗到亮,从亮到暗的变化2.仅计算|x|,产生最强的响应是正交于x轴的边;|y|则是正交于y轴的边。3.由于微分增强了噪音,平滑效果是Sobel算子特别引人注意的特性Kirsch算子(方向算子)模板3-530-533-533330-53-5-53333033-5-5-533303-5-53-533-503-533-5-53-503-5333-5-5-5033333-5-530-53333特点在计算边缘强度的同时可以得到边缘的方向各方向间的夹角为45º分析取其中最大的值作为边缘强度,而将与之对应的方向作为边缘方向;如果取最大值的绝对值为边缘强度,并用考虑最大值符号的方法来确定相应的边缘方向,则考虑到各模板的对称性,只要有前四个模板就可以了。Nevitia算子拉普拉斯算子定义:二维函数f(x,y)的拉普拉斯是一个二阶的微分定义为:2f=[2f/x2,2f/y2]离散形式:模板:可以用多种方式被表示为数字形式。对于一个3x3的区域,经验上被推荐最多的形式是:),(4)1,()1,(),1(),1(),(2yxfyxfyxfyxfyxfyxf拉普拉斯算子定义数字形式的拉普拉斯的基本要求是,作用于中心像素的系数是一个负数,而且其周围像素的系数为正数,系数之和必为0。11-4001001拉普拉斯算子拉普拉斯算子的分析:优点:各向同性、线性和位移不变的;对细线和孤立点检测效果较好。缺点:对噪音的敏感,对噪声有双倍加强作用;不能检测出边的方向;常产生双像素的边缘。由于梯度算子和Laplace算子都对噪声敏感,因此一般在用它们检测边缘前要先对图像进行平滑。Marr算子Marr算子是在Laplacian算子的基础上实现的,它得益于对人的视觉机理的研究,有一定的生物学和生理学意义。由于Laplacian算子对噪声比较敏感,为了减少噪声影响,可先对图像进行平滑,然后再用Laplacian算子检测边缘。平滑函数应能反映不同远近的周围点对给定像素具有不同的平滑作用,因此,平滑函数采用正态分布的高斯函数,即:2222),(yxeyxh其中σ是方差。用h(x,y)对图像f(x,y)的平滑可表示为:*代表卷积。令r是离原点的径向距离,即r2=x2+y2。对图像g(x,y)采用Laplacian算子进行边缘检测,可得:这样,利用二阶导数算子过零点的性质,可确定图像中阶跃边缘的位置。称为高斯-拉普拉斯滤波算子,也称为LOG滤波器,或“墨西哥草帽”。),(*),(),(yxfyxhyxg222222242(,)*(,)()*(,)*(,)rrghxyfxyefxyhfxyh2Marr算子一维LOG函数及其变换函数二维LOG函数Marr算子2h-σσ由于的平滑性质能减少噪声的影响,所以当边缘模糊或噪声较大时,利用检测过零点能提供较可靠的边缘位置。在该算子中,σ的选择很重要,σ小时边缘位置精度高,但边缘细节变化多;σ大时平滑作用大,但细节损失大,边缘点定位精度低。应根据噪声水平和边缘点定位精度要求适当选取σ。下面是σ=10时,Marr算子的模板:Marr算子h2(a)原图(b)▽2h结果(c)正值为黑,负值为白(d)过零点利用▽2h检测过零点曲面拟合法出发点基于差分检测图像边缘的算子往往对噪声敏感。因此对一些噪声比较严重的图像就难以取得满意的效果。若用平面或高阶曲面来拟合图像中某一小区域的灰度表面,求这个拟合平面或曲面的外法线方向的微分或二阶微分检测边缘,可减少噪声影响。四点拟合灰度表面法用一平面p(x,y)=ax+by+c来拟合空间四邻像素的灰度值f(x,y)、f(x,y+1)、f(x+1,y)、f(x+1,y+1)。定义均方差为:2),(),(yxfyxp按均方差最小准则,令可解出参数a,b,c。可推导出:按梯度的定义,由平面p(x,y)=ax+by+c的偏导数很容易求得梯度。a为两行像元平均值的差分,b为两列像元平均值的差分。1(1,)(1,1)(,)(,1)21(,1)(1,1)(,)(1,)213(,)(1,)(,1)4afxyfxyfxyfxybfxyfxyfxyfxycfxyfxyfxy,ppabxy这种运算可简化为模板求卷积进行,计算a和b对应的模板如下:11111111特点其过程是求平均后再求差分,因而对噪声有抑制作用。梯度算子Roberts算子Prewitt算子Sobel算子Kirsch算子原始图像例子Laplacian算子Marr算子曲面拟合法例子梯度算子Roberts算子Prewitt算子Sobel算子Kirsch算子原始图像Laplacian算子Marr算子曲面拟合法线的检测通过比较典型模板的计算值,确定一个点是否在某个方向的线上-1-1-1222-1-1-1R1-1-12-12-12-1-1R2-12-1-12-1-12-1R32-1-1-12-1-1-12R4线的检测111555111111555111111555111R1=-6+30=24R2=-14+14=0R3=-14+14=0R4=-14+14=07.3边缘跟踪出发点由于噪音的原因,边界的特征很少能够被完整地描述,在亮度不一致的地方会中断。因此典型的边检测算法后面总要跟随着连接过程和其它边界检测过程,用来归整边像素,成为有意义的边。边缘跟踪的概念将检测的边缘点连接成线就是边缘跟踪线是图像的一种中层符号描述由边缘形成线特征的两个过程可构成线特征的边缘提取将边缘连接成线连接边缘的方法光栅跟踪全向跟踪光栅扫描跟踪概念是一种采用电视光栅行扫描顺序,结合门限检测,对遇到的像素进行分析,从而确定是否为边缘的跟踪方法。光栅扫描跟踪具体步骤:(1)确定一个比较高的阈值d,把高于该阈值的像素作为对象点。称该阈值为“检测阈值”。(2)用检测阈值d对图像第一行像素进行检测,凡超过d的点都接受为对象点,并作为下一步跟踪的起始点。(3)选取一个比较低的阈值作为跟踪阈值,该阈值可以根据不同准则来选择。例如,取相邻对象点之灰度差的最大值作为跟踪阈值,有时还利用其他参考准则,如梯度方向、对比度等。(4)确定跟踪邻域。取像素(i,j)的下一行像素(i+1,j-1),(i+1,j),(i+1,j+1)为跟踪邻域。光栅扫描跟踪(5)扫描下一行像素,凡和上一行已检测出来的对像点相邻接的像素,其灰度差小于等于跟踪阈值的,都接受为对象点,反之去除。(6)对于已检测出的某一对象点,如果在下一行跟踪领域中,没有任何一个像素被接受为对象点,那么,这一条曲线的跟踪便可结束。如果同时有两个,甚至三个邻域点均被接受为对象点,则说明曲线发生分支,跟踪将对各分支同时进行。如果若干分支曲线合并成一条曲线,则跟踪可集中于一条曲线上进行。一曲线跟踪结束后,