12018年江苏省徐州市中考数学试卷一、选择题(共8小题,每小题3分,满分24分)1.(3分)4的相反数是()A.B.﹣C.4D.﹣42.(3分)下列计算正确的是()A.2a2﹣a2=1B.(ab)2=ab2C.a2+a3=a5D.(a2)3=a63.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.(3分)如图是由5个相同的正方体搭成的几何体,其左视图是()A.B.C.D.5.(3分)抛掷一枚质地均匀的硬币,若前3次都是正面朝上,则第4次正面朝上的概率()A.小于B.等于C.大于D.无法确定6.(3分)某市从不同学校随机抽取100名初中生,对“学校统一使用数学教辅用书的册数”进行调查,统计结果如下:结果如下:册数0123人数13352923关于这组数据,下列说法正确的是()A.众数是2册B.中位数是2册C.极差是2册D.平均数是2册7.(3分)如图,在平面直角坐标系中,函数y=kx与y=﹣的图象交于A,B两点,过A作y轴的垂线,交函数y=的图象于点C,连接BC,则△ABC的面积为()A.2B.4C.6D.88.(3分)若函数y=kx+b的图象如图所示,则关于x的不等式kx+2b<0的解集为()2A.x<3B.x>3C.x<6D.x>6二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程)9.(3分)五边形的内角和是°.10.(3分)我国自主研发的某型号手机处理器采用10nm工艺,已知1nm=0.000000001m,则10nm用科学记数法可表示为m.11.(3分)化简:||=.12.(3分)若在实数范围内有意义,则x的取值范围为.13.(3分)若2m+n=4,则代数式6﹣2m﹣n的值为.14.(3分)若菱形两条对角线的长分别是6cm和8cm,则其面积为cm2.15.(3分)如图,Rt△ABC中,∠ABC=90°,D为AC的中点,若∠C=55°,则∠ABD=°.16.(3分)如图,扇形的半径为6,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的底面半径为.17.(3分)如图,每个图案均由边长相等的黑、白两色正方形按规律拼接而成,照此规律,第n个图案中白色正方形比黑色正方形多个.(用含n的代数式表示)18.(3分)如图,AB为⊙O的直径,AB=4,C为半圆AB的中点,P为上一动点,延长BP至点Q,使BP•BQ=AB2.若点P由A运动到C,则点Q运动的路径长为.三、解答题(本大题共有10小题,共86分.解答时应写出文字说明、证明过程或演算步骤)19.(10分)计算:3(1)﹣12+20180﹣()﹣1+;(2)÷.20.(10分)(1)解方程:2x2﹣x﹣1=0;(2)解不等式组:21.(7分)不透明的袋中装有1个红球与2个白球,这些球除颜色外都相同,将其搅匀.(1)从中摸出1个球,恰为红球的概率等于;(2)从中同时摸出2个球,摸到红球的概率是多少?(用画树状图或列表的方法写出分析过程)22.(7分)在“书香校园”活动中,某校为了解学生家庭藏书情况,随机抽取本校部分学生进行调查,并绘制成部分统计图表如下:类别家庭藏书m本学生人数A0≤m≤2520B26≤m≤100aC101≤m≤20050Dm≥20166根据以上信息,解答下列问题:(1)该调查的样本容量为,a=;(2)在扇形统计图中,“A”对应扇形的圆心角为°;(3)若该校有2000名学生,请估计全校学生中家庭藏书200本以上的人数.23.(8分)如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方4作正方形CEFG,作FH⊥AD,垂足为H,连接AF.(1)求证:FH=ED;(2)当AE为何值时,△AEF的面积最大?24.(8分)徐州至北京的高铁里程约为700km,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A与“复兴号”高铁B前往北京.已知A车的平均速度比B车的平均速度慢80km/h,A车的行驶时间比B车的行驶时间多40%,两车的行驶时间分别为多少?25.(8分)如图,AB为⊙O的直径,点C在⊙O外,∠ABC的平分线与⊙O交于点D,∠C=90°.(1)CD与⊙O有怎样的位置关系?请说明理由;(2)若∠CDB=60°,AB=6,求的长.26.(8分)如图,1号楼在2号楼的南侧,两楼高度均为90m,楼间距为AB.冬至日正午,太阳光线与水平面所成的角为32.3°,1号楼在2号楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,1号楼在2号楼墙面上的影高为DA.已知CD=42m.(1)求楼间距AB;(2)若2号楼共30层,层高均为3m,则点C位于第几层?(参考数据:sin32.3°≈0.53,cos32.3°≈0.85,tan32.3°≈0.63,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47)527.(10分)如图,在平面直角坐标系中,二次函数y=﹣x2+6x﹣5的图象与x轴交于A、B两点,与y轴交于点C,其顶点为P,连接PA、AC、CP,过点C作y轴的垂线l.(1)求点P,C的坐标;(2)直线l上是否存在点Q,使△PBQ的面积等于△PAC的面积的2倍?若存在,求出点Q的坐标;若不存在,请说明理由.628.(10分)如图,将等腰直角三角形纸片ABC对折,折痕为CD.展平后,再将点B折叠在边AC上(不与A、C重合),折痕为EF,点B在AC上的对应点为M,设CD与EM交于点P,连接PF.已知BC=4.(1)若M为AC的中点,求CF的长;(2)随着点M在边AC上取不同的位置,①△PFM的形状是否发生变化?请说明理由;②求△PFM的周长的取值范围.72018年江苏省徐州市中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(3分)4的相反数是()A.B.﹣C.4D.﹣4【解答】解:4的相反数是﹣4,故选:D.2.(3分)下列计算正确的是()A.2a2﹣a2=1B.(ab)2=ab2C.a2+a3=a5D.(a2)3=a6【解答】解:A、2a2﹣a2=a2,故A错误;B、(ab)2=a2b2,故B错误;C、a2与a3不是同类项,不能合并,故C错误;D、(a2)3=a6,故D正确.故选:D.3.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、既是轴对称图形,又是中心对称图形,故此选项正确;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:A.4.(3分)如图是由5个相同的正方体搭成的几何体,其左视图是()A.B.C.D.【解答】解:根据立体图可知该左视图是底层有2个小正方形,第二层左边有1个小正方形.故选:A.5.(3分)抛掷一枚质地均匀的硬币,若前3次都是正面朝上,则第4次正面朝上的概率()8A.小于B.等于C.大于D.无法确定【解答】解:连续抛掷一枚质地均匀的硬币4次,前3次的结果都是正面朝上,他第4次抛掷这枚硬币,正面朝上的概率为:,故选:B.6.(3分)某市从不同学校随机抽取100名初中生,对“学校统一使用数学教辅用书的册数”进行调查,统计结果如下:结果如下:册数0123人数13352923关于这组数据,下列说法正确的是()A.众数是2册B.中位数是2册C.极差是2册D.平均数是2册【解答】解:A、众数是1册,结论错误,故A不符合题意;B、中位数是2册,结论正确,故B符合题意;C、极差=3﹣0=3册,结论错误,故C不符合题意;D、平均数是(0×13+1×35+2×29+3×23)÷100=1.62册,结论错误,故D不符合题意.故选:B.7.(3分)如图,在平面直角坐标系中,函数y=kx与y=﹣的图象交于A,B两点,过A作y轴的垂线,交函数y=的图象于点C,连接BC,则△ABC的面积为()A.2B.4C.6D.8【解答】解:∵正比例函数y=kx与反比例函数y=﹣的图象关于原点对称,∴设A点坐标为(x,﹣),则B点坐标为(﹣x,),C(﹣2x,﹣),∴S△ABC=×(﹣2x﹣x)•(﹣﹣)=×(﹣3x)•(﹣)=6.故选:C.8.(3分)若函数y=kx+b的图象如图所示,则关于x的不等式kx+2b<0的解集为()A.x<3B.x>3C.x<6D.x>6【解答】解:∵一次函数y=kx+b经过点(3,0),9∴3k+b=0,且k<0,则b=﹣3k,∴不等式为kx﹣6k<0,解得:x>6,故选:D.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程)9.(3分)五边形的内角和是540°.【解答】解:(5﹣2)•180°=540°,故答案为:540°.10.(3分)我国自主研发的某型号手机处理器采用10nm工艺,已知1nm=0.000000001m,则10nm用科学记数法可表示为1×10﹣8m.【解答】解:10nm用科学记数法可表示为1×10﹣8m,故答案为:1×10﹣8.11.(3分)化简:||=.【解答】解:∵<0∴||=2﹣.故答案为:2﹣.12.(3分)若在实数范围内有意义,则x的取值范围为x≥2.【解答】解:由题意得:x﹣2≥0,解得:x≥2,故答案为:x≥2.13.(3分)若2m+n=4,则代数式6﹣2m﹣n的值为2.【解答】解:∵2m+n=4,∴6﹣2m﹣n=6﹣(2m+n)=6﹣4=2,故答案为2.14.(3分)若菱形两条对角线的长分别是6cm和8cm,则其面积为24cm2.【解答】解:∵菱形的两条对角线分别是6cm和8cm,∴这个菱形的面积是:×6×8=24(cm2).故答案为:24.15.(3分)如图,Rt△ABC中,∠ABC=90°,D为AC的中点,若∠C=55°,则∠ABD=35°.【解答】解:在Rt△ABC中,∠ABC=90°,D为AC的中点,10∴BD是中线,∴AD=BD=CD,∴∠BDC=∠C=55°,∴∠ABD=90°﹣55°=35°.故答案是:35.16.(3分)如图,扇形的半径为6,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的底面半径为2.【解答】解:扇形的弧长==4π,∴圆锥的底面半径为4π÷2π=2.故答案为:2.17.(3分)如图,每个图案均由边长相等的黑、白两色正方形按规律拼接而成,照此规律,第n个图案中白色正方形比黑色正方形多4n+3个.(用含n的代数式表示)【解答】解:第1个图形黑、白两色正方形共3×3个,其中黑色1个,白色3×3﹣1个,第2个图形黑、白两色正方形共3×5个,其中黑色2个,白色3×5﹣2个,第3个图形黑、白两色正方形共3×7个,其中黑色3个,白色3×7﹣3个,依此类推,第n个图形黑、白两色正方形共3×(2n+1)个,其中黑色n个,白色3×(2n+1)﹣n个,即:白色正方形5n+3个,黑色正方形n个,故第n个图案中白色正方形比黑色正方形多4n+3个.18.(3分)如图,AB为⊙O的直径,AB=4,C为半圆AB的中点,P为上一动点,延长BP至点Q,使BP•BQ=AB2.若点P由A运动到C,则点Q运动的路径长为4.【解答】解:如图所示:连接AQ.11∵BP•BQ=AB2,∴=.又∵∠ABP=∠QBA,∴△ABP∽△QBA,∴∠APB=∠QAB=90°,∴QA始终与AB垂直.当点P在A点时,Q与A重合,当点P在C点时,AQ=2OC=4,此时,Q运动到最远处,∴点Q运动路径长为4.故答案为:4.三、解答题(本大题共有10小题,共86分.解答时应写出文字说明、证明过程或演算步骤)19.(10分)计算:(1)﹣12+20180﹣()﹣1+;(2)÷.【解答】解:(1)﹣12+20180﹣()﹣1+;=﹣1+1﹣2+2,=0;(2)÷.=÷,=2a﹣2b.20.(10分)(1)解方程:2x2﹣x﹣1=0;(2)解不等式组:【解答】解:(1)2x2﹣x﹣1=0,(2x+1)(x﹣1)=0,2x+1=0,x﹣1=0,x1=﹣,x2=1;12(2)∵解不等式①得:x>﹣4,解不等式②得:x≤