中考数学模拟试卷(5)(有答案)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第1页共23页中考数学模拟试卷(3)一、选择题(共10小题,每小题3分,满分30分)1.下列各式不成立的是()A.|﹣2|=2B.|+2|=|﹣2|C.﹣|+2|=±|﹣2|D.﹣|﹣3|=+(﹣3)2.下列各实数中,最小的是()A.﹣πB.(﹣1)0C.D.|﹣2|3.如图,AB∥CD,∠C=32°,∠E=48°,则∠B的度数为()A.120°B.128°C.110°D.100°4.下列全国各地地铁标志图中,既是轴对称图形又是中心对称图形的是()A.B.C.D.5.下列计算正确的是()A.2a+3b=5abB.(a2)4=a8C.a3•a2=a6D.(a﹣b)2=a2﹣b26.据报道,中国内地首次采用“全无人驾驶”的燕房线地铁有望年底完工,列车通车后将极大改善房山和燕山居民的出行条件,预计年输送乘客可达7300万人次,将7300用科学记数法表示应为()A.73×102B.7.3×103C.0.73×104D.7.3×1027.如图是根据某班50名同学一周的体育锻炼情况绘制的条形统计图,则这个班50名同学一周参加体育锻炼时间的众数与中位数分别为()A.9,8B.8,9C.8,8.5D.19,178.已知关于x的一元二次方程mx2+2x﹣1=0有两个不相等的实数根,则m的取值范围是()A.m<﹣1B.m>1C.m<1且m≠0D.m>﹣1且m≠09.如图,在矩形ABCD中,AB=1,AD=2,将AD边绕点A顺时针旋转,使点D恰好落在BC边上的D′处,则阴影部分的扇形面积为()第2页共23页A.πB.C.D.10.已知:在Rt△ABC中,∠C=90°,AC=6,BC=8,点E是边AC上一动点,过点E作EF∥BC,交AB边于点F,点D为BC上任一点,连接DE,DF.设EC的长为x,则△DEF的面积y关于x的函数关系大致为()A.B.C.D.二、填空题(本大题共6小题,每小题4分,共24分)11.正多边形的一个内角的度数恰好等于它的外角的度数的3倍,则这个多边形的边数为.12.分式方程=的解为.13.如图,自行车的链条每节长为2.5cm,每两节链条相连接部分重叠的圆的直径为0.8cm,如果某种型号的自行车链条共有60节,则这根链条没有安装时的总长度为cm.14.如图,菱形ABCD的边长为15,sin∠BAC=,则对角线AC的长为.15.如图,△ABC与△DEF是位似图形,位似比为2:3,若AB=6,那么DE=.第3页共23页16.如图,已知S△ABC=8m2,AD平分∠BAC,且AD⊥BD于点D,则S△ADC=m2.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.解方程:x2﹣2x﹣4=0.18.先化简,再求值:﹣÷.其中x=.19.如图,BD是矩形ABCD的一条对角线.(1)作BD的垂直平分线EF,分别交AD,BC于点E,F,垂足为点O(要求用尺规作图,保留作图痕迹,不要求写作法)(2)在(1)中,连接BE和DF,求证:四边形DEBF是菱形.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.将分别标有数字1,2,3的三张卡片洗匀后,背面朝上放在桌上.(1)随机抽取一张,求抽到奇数的概率;(2)随机抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,能组成哪些两位数?用树状图(或列表法)表示所有可能出现的结果.这个两位数恰好是4的倍数的概率是多少?21.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.(1)求证:①△ABG≌△AFG;②BG=GC;(2)求△FGC的面积.22.“关注校车,关爱儿童”成为今年全社会热议的焦点话题之一.某幼儿园计划购进一批校车.若单独购买35座校车若干辆,现有的需接送的儿童刚好坐满;若单独购买55座校车,则可以少买一辆,且余45第4页共23页个空座位.(1)求该幼儿园现有的需接送儿童人数;(2)已知35座校车的单价为每辆32万元,55座校车的单价为每辆40万元.根据购车资金不超过150万元的预算,学校决定同时购进这两种校车共4辆(可以坐不满),请你计算本次购进小车的费用.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于P(n,2),与x轴交于A(﹣4,0),与y轴交于C,PB⊥x轴于点B,且AC=BC.(1)求一次函数、反比例函数的解析式;(2)反比例函数图象有一点D,使得以B、C、P、D为顶点的四边形是菱形,求出点D的坐标.24.⊙O的半径为5,AB是⊙O的直径,点C在⊙O上,点D在直线AB上.(1)如图(1),已知∠BCD=∠BAC,求证:CD是⊙O的切线;(2)如图(2),CD与⊙O交于另一点E.BD:DE:EC=2:3:5,求圆心O到直线CD的距离;(3)若图(2)中的点D是直线AB上的动点,点D在运动过程中,会出现C,D,E在三点中,其中一点是另外两点连线的中点的情形,问这样的情况出现几次?25.如图1,矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△DEC≌△EDA;(2)求DF的值;(3)如图2,若P为线段EC上一动点,过点P作△AEC的内接矩形,使其顶点Q落在线段AE上,定点M、N落在线段AC上,当线段PE的长为何值时,矩形PQMN的面积最大?并求出其最大值.第5页共23页第6页共23页中考数学模拟试卷(3)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列各式不成立的是()A.|﹣2|=2B.|+2|=|﹣2|C.﹣|+2|=±|﹣2|D.﹣|﹣3|=+(﹣3)【考点】绝对值.【分析】分别根据绝对值的定义求出各选项的值即可.【解答】解:A、正确,符合绝对值的定义;B、正确,符合绝对值的定义;C、错误,因为﹣|+2|=﹣2,±|﹣2|=±2;D、正确,因为﹣|﹣3|=﹣3,+(﹣3)=﹣3.故选C.【点评】本题考查的是绝对值的定义,即一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.2.下列各实数中,最小的是()A.﹣πB.(﹣1)0C.D.|﹣2|【考点】实数大小比较;零指数幂.【分析】首先求出每个选项中的数各是多少;然后根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,判断出最小的实数是多少即可.【解答】解:﹣π≈﹣3.14,(﹣1)0=1,,∵﹣3.14<﹣1<1<2,∴﹣,∴各实数中,最小的是﹣π.故选:A.【点评】(1)此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:(1)a0=1(a≠0);(2)00≠1.(3)此题还考查了立方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0.(4)此题还考查了绝对值的非负性的应用,要熟练掌握.3.如图,AB∥CD,∠C=32°,∠E=48°,则∠B的度数为()第7页共23页A.120°B.128°C.110°D.100°【考点】平行线的性质.【分析】根据三角形的内角和=180°,求出∠CDE=100°,由AB∥CD,同位角相等得到∠B的度数.【解答】解:∵∠C=32°,∠E=48°,∴∠CDE=100°,∵AB∥CD,∴∠B=∠CDE=100°.故选D.【点评】此题考查了平行线的性质与三角形外角的性质.此题难度不大,注意掌握数形结合思想的应用.4.下列全国各地地铁标志图中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,也不是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、是轴对称图形,不是中心对称图形.故错误.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.下列计算正确的是()A.2a+3b=5abB.(a2)4=a8C.a3•a2=a6D.(a﹣b)2=a2﹣b2【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法;完全平方公式.【分析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解.【解答】解:A、2a与3b不是同类项,不能合并,故错误;第8页共23页B、正确;C、a3•a2=a5,故错误;D、(a﹣b)2=a2﹣2ab+b2,故错误;故选:B.【点评】本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.6.据报道,中国内地首次采用“全无人驾驶”的燕房线地铁有望年底完工,列车通车后将极大改善房山和燕山居民的出行条件,预计年输送乘客可达7300万人次,将7300用科学记数法表示应为()A.73×102B.7.3×103C.0.73×104D.7.3×102【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将7300用科学记数法表示为:7.3×103.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.如图是根据某班50名同学一周的体育锻炼情况绘制的条形统计图,则这个班50名同学一周参加体育锻炼时间的众数与中位数分别为()A.9,8B.8,9C.8,8.5D.19,17【考点】中位数;条形统计图;众数.【专题】图表型.【分析】解读统计图,获取信息,根据定义求解.【解答】解:数据8出现了19次,最多是8,8为众数;在第25位、26位的均是9,所以9为中位数.故选B.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是第9页共23页偶数个则找中间两位数的平均数.8.已知关于x的一元二次方程mx2+2x﹣1=0有两个不相等的实数根,则m的取值范围是()A.m<﹣1B.m>1C.m<1且m≠0D.m>﹣1且m≠0【考点】根的判别式;一元二次方程的定义.【分析】由关于x的一元二次方程mx2+2x﹣1=0有两个不相等的实数根,根据一元二次方程的定义和根的判别式的意义可得m≠0且△>0,即22﹣4•m•(﹣1)>0,两个不等式的公共解即为m的取值范围.【解答】解:∵关于x的一元二次方程mx2+2x﹣1=0有两个不相等的实数根,∴m≠0且△>0,即22﹣4•m•(﹣1)>0,解得m>﹣1,∴m的取值范围为m>﹣1且m≠0.∴当m>﹣1且m≠0时,关于x的一元二次方程mx2+2x﹣1=0有两个不相等的实数根.故选D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△<0,方程有两个相等的实数根;当△=0,方程没有实数根;也考查了一元二次方程的定义.9.如图,在矩形ABCD中,AB=1,AD=2,将AD边绕点A顺时针旋转,使点D恰好落在BC边上的D′处,则阴影部分的扇形面积为()A.πB.C.D.【考点】扇形面积的计算;旋转的性质.【分析】先根据图形旋转的性质得出

1 / 23
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功