苏教版七年级数学下册知识点(详细全面精华)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

苏教版七年级数学下册知识点(详细全面精华)2第七章图形的认识(二)一、直线被第三条直线所截形成8个角。(3线8角)1.同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。如:∠1和∠5。2.内错角:(在两条直线内部,位于第三条直线两侧)在两条直线之间,又在直线EF的两侧,具有这种位置关系的两个角叫内错角。如:∠3和∠5。3.同旁内角:(在两条直线内部,位于第三条直线同侧)在两条直线之间,又在直线EF的同侧,具有这种位置关系的两个角叫同旁内角。如:∠3和∠6。二、平行线及其判定(一)平行线1.平行:两条直线不相交。互相平行的两条直线,互为平行线。a∥b(在同一平面内,不相交的两条直线叫做平行线。)2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。3.平行公理推论:平行于同一直线的两条直线互相平行。如果b//a,c//a,那么b//c(二)平行线的判定:1.两条平行线被第三条直线所截,如果同位角相等,那么这两条直线平行。(同位角相等,两直线平行)2.两条平行线被第三条直线所截,如果内错角相等,那么这两条直线平行。(内错角相等,两直线平行)3.两条平行线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。(同旁内角互补,两直线平行)4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则b∥c。推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。三、平行线的性质(一)平行线的性质1.两条平行线被第三条直线所截,同位角相等。(两直线平行,同位角相等)2.两条平行线被第三条直线所截,内错角相等。(两直线平行,内错角相等)3.两条平行线被第三条直线所截,同旁内角互补。(两直线平行,同旁内角相等)(二)命题、定理、证明1.命题的概念:判断一件事情的语句,叫做命题。2.命题的组成:每个命题都是题设、结论两部分组成。题设是已知事项;结论是由已知事项推出的事项。命题常写成“如果„„,那么3„„”的形式。具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论。3.真命题:正确的命题,题设成立,结论一定成立。4.假命题:错误的命题,题设成立,不能保证结论一定成立。5.定理:经过推理证实得到的真命题。(定理可以做为继续推理的依据)6.证明:推理的过程叫做证明。四、平移1.平移:平移是指在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移变换(简称平移),平移不改变物体的形状和大小。2.平移的性质①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点。连接各组对应点的线段平行且相等。①对应点的连线平行且相等;②对应线段相等;③对应角相等。第八章幂的运算一、幂的运算:乘方的概念:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在na中,a叫做底数,n叫做指数。乘方的性质:(1)负数的奇次幂是负数,负数的偶次幂的正数。(2)正数的任何次幂都是正数,0的任何正整数次幂都是01、同底数幂的乘法法则:nmnmaaa(nm,都是正整数)同底数幂相乘,底数不变,指数相加。注意底数可以是多项式或单项式。如:532)()()(bababa2、幂的乘方法则:mnnmaa)((nm,都是正整数)幂的乘方,底数不变,指数相乘。如:10253)3(幂的乘方法则可以逆用:即mnnmmnaaa)()(如:23326)4()4(43、积的乘方法则:nnnbaab)((n是正整数)。积的乘方,等于各因数乘方的积。如:(523)2zyx=5101555253532)()()2(zyxzyx4、同底数幂的除法法则:nmnmaaa(nma,,0都是正整数,且)nm4同底数幂相除,底数不变,指数相减。如:3334)()()(baababab5、零指数;10a,即任何不等于零的数的零次方等于1。6.负指数幂的概念:a-p=pa1(a≠0,p是正整数)任何一个不等于零的数的-p(p是正整数)指数幂,等于这个数的p指数幂的倒数.也可表示为:ppnmmn(m≠0,n≠0,p为正整数)7、科学记数法:把一个绝对值大于10(或者小于1)的整数记为a³10n的形式(其中1≤|a|<10),这种记数法叫做科学记数法.第九章整式的乘法与因式分解1、单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。注意:①积的系数等于各因式系数的积,先确定符号,再计算绝对值。②相同字母相乘,运用同底数幂的乘法法则。③只在一个单项式里含有的字母,则连同它的指数作为积的一个因式④单项式乘法法则对于三个以上的单项式相乘同样适用。⑤单项式乘以单项式,结果仍是一个单项式。8、单项式乘以多项式,就是用单项式去乘多项式的每一项,再把所得的积相加,即mcmbmacbam)((cbam,,,都是单项式)。5注意:①积是一个多项式,其项数与多项式的项数相同。②运算时要注意积的符号,多项式的每一项都包括它前面的符号。③在混合运算时,要注意运算顺序,结果有同类项的要合并同类项。]9、多项式与多项式相乘,用多项式的每一项乘以另一个多项式的每一项,再把所的的积相加。10、乘法公式:平方差公式:22))((bababa注意平方差公式展开只有两项公式特征:左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数。右边是相同项的平方减去相反项的平方。如:))((zyxzyx=11、完全平方公式:2222)(bababa完全平方公式的口诀:首平方,尾平方,首尾2倍中间放,符号和前一个样。公式的变形使用:(1)abbaabbaba2)(2)(2222;abbaba4)()(22222)()]([)(bababa;222)()]([)(bababa(2)三项式的完全平方公式:bcacabcbacba222)(222212、单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。注意:首先确定结果的系数(即系数相除),然后同底数幂相除,如果只在被除式里含有的字母,则连同它的指数作为商的一个因式。13、多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,在把所的的商相加。即:cbamcmmbmmammcmbmam)(6三、因式分解1、因式分解的定义:把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.掌握其定义应注意以下几点:(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;(2)因式分解必须是恒等变形;(3)因式分解必须分解到每个因式都不能分解为止.弄清因式分解与整式乘法的内在的关系.因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.因式分解的常用方法:1、提公因式法(1)会找多项式中的公因式;公因式的构成一般情况下有三部分:①系数一各项系数的最大公约数;②字母——各项含有的相同字母;③指数——相同字母的最低次数;(2)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.(3)注意点:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.2、公式法运用公式法分解因式的实质是:把整式中的乘法公式反过来使用;常用的公式:①平方差公式:a2-b2=(a+b)(a-b)②完全平方公式:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)3、分组分解法:观察多项式:2aabacbc发现:多项式中既无公因式可提,也无公式法可用,但第一,第二项有公因式:a-b,第三,第四项有公因式:a-b。所以,2()()aabacbcac后,又发现有公因式:,最后2()()()()aabacbcac。这种利用分组来分解因式的方法叫做分组分解法4、十字相乘法:x2+5x+6=(x+2)·(x+3);7分析上式,我们发现,二次项的系数1分解成1和1两个因数的积;常数项6分解成2和3两个因数的积;当我们把1,1;2,3竖写后再交叉相乘的和正好等于一次项系数(如图)最后横写两个一次式就是分解的结果。像这种分解二次项的系数和常数项后交叉相乘的和等于一次项系数的方法,通常叫做十字相乘法。因式分解的十二种方法把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.因式分解的方法多种多样,现总结如下:1、提公因法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.例1、分解因式x-2x-x(2003淮安市中考题)x-2x-x=x(x-2x-1)2、应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式.例2、分解因式a+4ab+4b(2003南通市中考题)12132358a+4ab+4b=(a+2b)3、分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)例3、分解因式m+5n-mn-5mm+5n-mn-5m=m-5m-mn+5n=(m-5m)+(-mn+5n)=m(m-5)-n(m-5)=(m-5)(m-n)4、十字相乘法对于mx+px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)5、配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解.例5、分解因式x+3x-409解x+3x-40=x+3x+()-()-40=(x+)-()=(x++)(x+-)=(x+8)(x-5)6、拆、添项法可以把多项式拆成若干部分,再用进行因式分解.例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)=c(c-a)(b+a)+b(a+b)(c-a)=(c+b)(c-a)(a+b)7、换元法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来.例7、分解因式2x-x-6x-x+22x-x-6x-x+2=2(x+1)-x(x+1)-6x=x[2(x+)-(x+)-6令y=x+,x[2(x+)-(x+)-6=x[2(y-2)-y-6]=x(2y-y-10)10=x(y+2)(2y-5)=x(x++2)(2x+-5)=(x+2x+1)(2x-5x+2)=(x+1)(2x-1)(x-2)8、求根法令多项式f(x)=0,求出其根为x,x,x,……x,则多项式可因式分解为f(x)=(x-x)(x-x)(x-x)……(x-x)例8、分解因式2x+7x-2x-13x+6令f(x)=2x+7x-2x-13x+6=0通过综合除法可知,f(x)=0根为,-3,-2,1则2x+7x-2x-13x+6=(2x-1)(x+3)(x+2)(x-1)9、图象法令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x,x,x,……x,则多项式可因式分

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功