*******************实践教学*******************兰州理工大学计算机与通信学院2012年春季学期数学模型与数学软件课程综合训练题目:股票风险专业班级:09级信息与计算科学01班姓名:杨帆学号:指导教师:成绩:1摘要组合证券投资理论最早是由马克维兹创立的均值—方差模型,由于投资的收益率受证券市场波动的影响,因而可以将其看作一个随机变量。我们用一定时期内3种股票的收益率X的期望值E(X)来衡量该种股票投资的获利能力,期望值越大,股票的获利能力越强;股票的风险用该种股票投资收益率的方差D(X)(收益的不确定性)来衡量,方差越小,股票投资的风险越小。文中首先作了合理的假设。在第一问中,根据题目所给的各年份3种股票的每股收益值,直接运用MATLAB软件编程可求出:股票A(每股收益)的方差D(A)=1.6000,股票B(每股收益)的方差D(B)=16.4556,股票C(每股收益)的方差D(C)=19.9556。股票A、B、C(每股收益)的协方差矩阵为:G=[1.60000.02221.03330.022216.45568.17781.03338.177819.9556]第二问中,我们假设各支股票的价格,由(每股收益/每股价格)可以求得各支股票的收益率,进而建立均值—方差模型,利用LINGO8.0可以求出结果。由于不同的每股价格会得到不同的结算,所以模型有一定的误差,这是由模型的假设引起的。关键字:组合证券投资均值—方差模型MATLAB、LINGO求解投资风险每股收益2一、前言组合证券投资理论是近些年来金融学研究的热点问题,最早的理论是由美国经济学家马克维兹创立的均值—方差模型。它是建立在多元随机变量的期望向量与协方差矩阵的基础上,来计算组合投资的期望收益率与方差(表示组合投资的风险),根据非满足性(在风险一定的条件下使收益率达到最大)或者风险规避性(在预期收益率之下使风险最小)原则建立组合证券投资优化模型。投资基金就是建立在组合投资理论的基础上。二、问题的陈述某投资公司经理欲将50万元基金用于股票投资。从长远来看,股票的收益是随机的。经过慎重考虑,他从所有上市交易的股票中选择了3种股票作为候选的投资对象。下表是统计的数据。表一年份股票A(每股收益)股票B(每股收益)股票C(每股收益)199858101999651120004111120017422002335200355320046.515620054121220064.5121320076815(1)计算每只股票的方差,以及它们的协方差;(2)在投资时可以用投资的方差来衡量风险。如果该投资经理今年的预期投资是20%,运用投资组合知识建立模型,解决如何分配资产使风险最小。3三、基本假设和符号规定2.1符号规定:D(i)股票i的方差,i为A、B、CG股票A、B、C的协方差矩阵Xi股票i在投资各年份内的收益率ωi投资股票i占总投资额的比例(∑ω𝑖3𝑖=1=1,ω𝑖≥0)R组合证券投资的收益率σij股票i与股票j收益率的协方差2.2基本假设:1.投资时用投资的方差D(X)来衡量风险;2.投资时用数学期望E(X)来衡量该种股票的预期收益率;3.投资越分散,总的风险越小;4.3种股票的每股价格是一样的,为定植;5.3种股票的每股价格在投资期内是固定不变的,不受意外因素影响。四、问题的求解3.1问题(1)的求解:运用MATLAB求每只股票的方差,编制程序如下:A=[5,6,4,7,3,5,6.5,4,4.5,6];B=[8,5,11,4,3,5,15,12,12,8];C=[10,11,11,2,5,3,6,12,13,15];var(A)ans=1.6000var(B)ans=16.4556var(C)ans=19.9556所以求解得:股票A(每股收益)的方差D(A)=1.6000股票B(每股收益)的方差D(B)=16.4556股票C(每股收益)的方差D(C)=19.9556运用MATLAB求股票的协方差,编制程序如下:4q=[A',B',C'];g=cov(q)g=1.60000.0222-1.03330.022216.45568.1778-1.03338.177819.9556所以股票A、B、C(每股收益)的协方差矩阵为G=[1.60000.02221.03330.022216.45568.17781.03338.177819.9556]3.2问题(2)的求解:3.2.1均值—方差模型的建立与分析;假定预期收益率和风险分别用数学期望E(Xi)=μi及方差D(Xi)=σ𝑖2来衡量(i=1、2、3)。3种风险股票的收益率向量为X=(X1,X2,X3)T,它是3维随机向量。X的期望向量μ=[E(X1),E(X2),E(X3)]T=(μ1,μ2,μ3),协方差矩阵G=[𝐷(𝑋1)𝐶ov(𝑋1,𝑋2)𝐶ov(𝑋1,𝑋3)𝐶ov(𝑋2,𝑋1)𝐷(𝑋2)𝐶ov(𝑋2,𝑋3)𝐶ov(𝑋3,𝑋1)𝐶ov(𝑋3,𝑋2)𝐷(𝑋3)]且一般假定G为正定矩阵。组合证券投资的收益率为R=∑ω𝑖𝑋𝑖3𝑖=1,满足∑ω𝑖=13𝑖=1,ω>0(此处假定在不允许卖空条件下的投资)。由于Xi为随机变量,则R也是随机变量,它的数学期望为:E(R)=∑ω𝑖(𝑋𝑖3𝑖=1)=∑ω𝑖μ3𝑖=1,方差为:σ=D(R)=D(∑ω𝑖𝑋𝑖3𝑖=1)=∑∑ω𝑖ω3𝑖=13𝑖=1。若记W=(ω1,ω2,ω3),𝐹3𝑇=(1,1,1)是分量为1的3维向量。则组合股票投资的期望收益率和风险可以分别表示为:E(R)=WTμσ2=WT∑𝑊由此可以建立组合股票投资决策模型:minσ2=WT∑𝑊S.T={WTμ≥𝜇0𝐹3𝑇𝑊=1𝑊≥0其中μ0是给定的预期收益率。该模型的意义是:在达到预期收益率不低于μ0的情况下使组合股票投资的风险最小。这就是著名的马克维兹(H.M.Markowitz)均值—方差模型,可以用LINGO求解。53.2.2模型的求解:由原问题的表格知道各年份股票A、B、C的收益率如下表所示(假设每股价格100元):表二年份股票A(每股收益)股票B(每股收益)股票C(每股收益)199858101999651120004111120017422002335200355320046.515620054121220064.5121320076815由上表的中的数据,用MATLAB可算得期望收益率向量和协方差矩阵分别为A=[0.05,0.06,0.04,0.07,0.03,0.05,0.065,0.04,0.045,0.06];B=[0.08,0.05,0.11,0.04,0.03,0.05,0.15,0.12,0.12,0.08];C=[0.1,0.11,0.11,0.02,0.05,0.03,0.06,0.12,0.13,0.15];mean(A)ans=0.0510mean(B)ans=0.0830mean(C)ans=0.0880q=[A',B',C'];g=cov(q)g=0.00020.0000-0.00010.00000.00160.0008-0.00010.00080.0020即μ=(0.051,0.083,0.088)G=[0.00020.00000.00010.00000.00160.00080.00010.00080.0020]若要进行组合投资,在投资的期望收益率不低于20%的前提下,使投资的风险最小。因此可以建立组合股票投资的均值—方差模型:minσ2=00002ω1+00016ω2+0.002ω3-00002ω1ω3+0.0016ω2ω36S.T={0.051ω1+0.083ω2+0.088ω3≥0.2ω1+ω2+ω3=1ω1≥0,ω2≥0,ω3≥0,用LINGO8.0求解,输入程序:model:min=0.0002*ω1^2+0.0016*ω2^2+0.002*ω3^2-0.0002*ω1*ω3+0.0016*ω2*ω3;0.051*ω1+0.083*w2+0.088*w3=0.2;ω1+ω2+ω3=1;end输出结果:图一因此,得:ω1=0.8729,ω2=0.0287,ω3=0.0984,minσ2=1.2957即得三种股票的投资比例分别为87.29%、2.87%和9.84%,可使组合股票的投资收益率不低于20%,投资的风险(方差)最小,最小值为1.2957。五、模型的理论依据根据多种证券的收益率构成的多维随机向量的期望向量和协方差矩阵,可以计算组合证券投资(它是随机向量的线性函数)的数学期望(是期望向量的线性函数)和方差(它是以协方差矩阵为系数矩阵的二次型),建立均值—方差模型,以达到在预期收益率之下使风险最小或者在风险一定的条件下使收益率最大。7六、模型的应用与推广组合证券投资理论是近些年来金融学研究的热点问题,最早的理论是由美国经济学家马克维兹创立的均值—方差模型。它是建立在多元随机变量的期望向量与协方差矩阵的基础上,来计算组合投资的期望收益率与方差(表示组合投资的风险),根据非满足性(在风险一定的条件下使收益率达到最大)或者风险规避性(在预期收益率之下使风险最小)原则建立组合证券投资优化模型。投资基金就是建立在组合投资理论的基础上。七、参考文献[1]杨桂元,唐小我,组合证券投资决策模型研究[J],2001.[2]张学敏,倪虹霞,MATLAB基础及应用[M],北京:中国电力出版社,2009.[3]张兴永,朱开永,数学建模[M],北京:煤炭工业出版社,2006.[4]杨桂元,李天胜,徐军编著.数学模型应用实例[M],合肥:工业大学出版社,2007.八、课程总结通过两星期的数学模型与数学软件课程综合训练,我从中受益匪浅,并且对数学模型与数学软件这一门课程有了更深一步的认识。我把这学期所学的理论知识和实践联系起来,在所开发的项目中渐渐成长。虽然我对这些新的知识运用得还不是很熟练,但是相信我也在滴水穿石地成长起来。发现问题,提出问题,解决问题,使我从不足之处出发,寻找新的学习方向。通过这个课程综合训练,我不仅提高了动手操作能力,对数学模型与数学软件有了更深的认识,能够更好地运用数学模型与数学软件进行编程设计,同时在思维、看待问题的全面性等方面也有了很大的提高。不过由于时间、经验不够、对数学模型与数学软件的掌握程度不深等问题,在这个模型设计还存在一些问题,希望可以在今后的模型设计上能够解决这些问题,做的更好。这次学习使我克服了偷懒的毛病,这在我以后的学习和工作中的心理定位与调节有很大的帮助。我感受到了做系统是一项非常烦琐周密的学习活动,它不但需要一个人周密的思考问题的能力,处理问题的能力,还需要有足够的耐心和严谨治学的作风,来不得半点马虎。学好数学建模要重视实践操作,所以在以后的学习过程中,我会更加注视实践操作。我一边实习一边探索,发现理论和实践要充分地结合,是需要扎实的基本功的,这就表明学好基础知识是理论付诸实践的前提。在实习中我学到了很多,希望在以后我能充分利用实习的机会充实自己,并希望这样的机会能被更好更多地提供。