第1章练习题(3)1.计算下列排列的反序数,从而判断奇偶性。2)1(12)2()1(321)1(nnnnnn(4)2)1()1(210)2(246)12(135nnnnn解:对于排列中的数字,设排列中有个小于它的数字,设这些小于它的数字中,位于其右边的有个,则位于其左的有个。2.已知排列的反序数,求的反序数。niii2111iiinn)(jirji)(jil则:njjnjjnjjjnniriliriliii11111)()()()()(niii21)()(jjiril)(2)1()(2111nnniiinniii对于任意n个不相等的自然数,其中最大的数字有n-1个小于它的,次大的数字有n-2个小于它的,……因此,2)1(01)2()1()(1nnnnilnjj解:四阶行列式中的项为5.写出四阶行列式中含因子且带负号的项。23a43214321jjjjaaaa含因子时,令23a32j是数字1、2、3、4的组合。4321jjjj则可能的组合有:1324,1342,2314,2341,4312,4321其中奇排列为:1324,2341,4312则含因子且带负号的项为:4321jjjj423123144134231244322311,,aaaaaaaaaaaa23a分析,无论如何组合,在中都至少有一个数字≥3,使得中出现,使得因此该行列式的值为0.(2)6.利用行列式的定义计算51543215154321)(52514241323125242322211514131211)1(000000000jjjjjjjjjaaaaaaaaaaaaaaaaaaaaa5432154321jjjjjaaaaa54321jjjjj543jjj5432154321jjjjjaaaaa)3,3(jiaij05432154321jjjjjaaaaa(4)6.利用行列式的定义计算51543215154321)()1(000000000000000jjjjjjjjjaaaaaxyyxyxyxyx其中非0项为:555145342312)23451(5544332211)12345()1()1(yxaaaaaaaaaa(3)8.利用行列式的性质计算00000111212111211222111324214bacacbcbabaaccbbacacbcbabaaccbbacacbcbarrrr(1)9.不展开行列式,证明下列等式成立。'''''''''2''''''''''''''''''cbacbacbabaaccbbaaccbbaaccb证明:右边左边'''''''''''''''2'''''''''''''''2'''''''''''''''''''''213123212)(cbcbacbcbacbcbacbcbacbcbacbcbabaaccbabaaccbabaaccbaccccccc(2)02coscossin2coscossin2coscossin222222证明:右边左边0coscossincoscossincoscossinsin-coscossinsin-coscossinsin-coscossin22222222222222222222213cc(3))0(,01010111100000222222xyzxyxzyzxyzxzyyzxzyx证明:000111010101011110)(2222222432432432xyxyzxzxyzyzxyzxyzyzxxzyyzxxyzxzyxyzxyzxyzrxyzrxyzrzryrxrzcycxc左边右边01010111102222221xyxzyzxyzc(1)10.计算行列式。dcbacbabaadcbacbabaadcbacbabaadcba3610363234232解:cbabaacbabaacbabaadcbaiirri36302320012,3,4cbabaacbabaacbabaaa363232按第一列展开baabaacbabaaaiirri302012,3baabaaa322按第一列展开原式4a(2)解:0303322021111nnn------!2203630022000113,2nnnnnccnii原式(3)nnnnnnnnnnnxxxxxaxxxxaaxxxaaaxxaaaax1321)1(1321313321212232111113121解:nnnnnnnnnnnnnnnnnnnnrrnniaxaaaxaaaaaxaaaaaaaxaaaaxii)1()2()1()1)(2(12312132331211121323122111131212,1,00000000001)())(()1(2331221nnnaxaxaxx(4)nnnnnnbababababababababa212221212111解:202)()(00000000012121131213121113,2111113131313121212121312111,3,211nnbbaaaaaaaabbbbbbbaaaaaaaaaaaaaaaaaaaaaaaaababababannccninnnnnrrniii原式(5)nnnnnnyxyxyxyxyxyxyxyxyx111111111212221212111解:原式BAyxyxyxyxyxyxyxyxyxyxyxyxyxyxyxnnnnnnnnnnn1111111111111112122212121112222121202111212222221213,21nnyxyxyxyxyxyxyxyxAnnnnnccnii∴原式302)(1111111111112112113,222222121111nnxxyxxxyyxyxxyxyxxyxyxxyBncycninnnnnnii302))((2121nnyyxxBA(6)mxxxxmxxxxmxnnn212121解:mxmmmmxmxxxmxxxmxniinniixccninnnniiccciin1113,22221)(0101001111121原式11.利用行列式的性质求方程:1,01111112111112111111111111nxnxnxx解:左边0)2)(3()1)((20000030000010000001111113,2xnxnxxxnxnxxrrnii则方程的根为22,1,0nx12.计算下列n阶行列式。xyyxxyxyx0000000000000000解:(1)yxyyxyyxyxxyxxn0000000000)1(00000000001按第一列展开原式nnnyx1)1(nnnnn110000200000220000111321解:(2)nnnnnnnnccc110000200000220000101322)1(21原式)!1(2)1()!1()1(2)1(11000200002-200012)1(111nnnnnnnnnnn列按第展开121212121111222111111nnnnnananaaaaaaaaaa(3)111122221211211211111nnnnnaaaanaaaanaaaa转置原式)2()1()1()1()1()2()1()2()1(nanaanaaaanaaaaa范德蒙行列式!1)!2()!1()1(!1)1()!2()1()!1()1(2)1(121nnnnnnnn)0(,121111122111212122222121111212111121innnnnnnnnnnnnnnnnnnnnnnabbbbababababababababaaaa(4)nnnnnnnnnniniarniabababababababababanii1121111222222211211111112,1111原式nnnnnnnnniniababababababababababababa112211223311111133112211范德蒙行列式)()()()())((1112213223111131132112nnnnnnnnabababababababababababab13.证明下列等式)sin()sin()sin(212cos2sin2cos2cos2sin2cos2cos2sin2cos(1)2cos2sin2cos2cos2sin2cos2cos2sin2cos2cos2cos2sin2cos2cos2sin2cos2cos2sin左边)sin()sin()sin(412cos2sin2cos22sin212cos2sin22sin212cos2cos2sin其中其中)sin()sin()sin(412cos2sin2cos22sin212cos2sin22sin212cos2sin2cos)sin()sin()sin(21)sin()sin()sin(41)sin()sin()sin(41)sin()si