一元二次方程的公式

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

一元二次方程的一般形式是ax²+bx+c=0(a≠0)其中ax²是二次项,a是二次项系数;b是一次项系数;bx是一次项;c是常数项。使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根。[3]变形式(a、b是实数,a≠0);(a、c是实数,a≠0);(a是实数,a≠0).注:a≠0这个条件十分重要.配方式两根式4求解方法编辑直接开平方法形如或()的一元二次方程可采用直接开平方法解一元二次方程。如果方程化成的形式,那么可得。如果方程能化成的形式,那么,进而得出方程的根。注意:①等号左边是一个数的平方的形式而等号右边是一个常数。②降次的实质是由一个一元二次方程转化为两个一元一次方程。③方法是根据平方根的意义开平方。[4]配方法步骤将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法。用配方法解一元二次方程的步骤:①把原方程化为一般形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。配方法的理论依据是完全平方公式配方法的关键是:先将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方。举例例一:用配方法解方程解:将常数项移到方程右边将二次项系数化为1:方程两边都加上一次项系数一半的平方:配方:直接开平方得:∴,.∴原方程的解为,.[5]求根公式法步骤用求根公式解一元二次方程的方法叫做求根公式法。用求根公式法解一元二次方程的一般步骤为:①把方程化成一般形式,确定a,b,c的值(注意符号);②求出判别式的值,判断根的情况;③在(注:此处△读“德尔塔”)的前提下,把a、b、c的值代入公式进行计算,求出方程的根。推导过程一元二次方程的求根公式导出过程如下:(为了配方,两边各加)(化简得)。一元二次方程的求根公式在方程的系数为有理数、实数、复数或是任意数域中适用。一元二次方程中的判别式:根号下b²-4ac应该理解为“如果存在的话,两个自乘后为的数当中任何一个”。在某些数域中,有些数值没有平方根。推导过程2一元二次方程的求根公式导出过程如下:a的取值范围任意,c取值范围任意,b=(a+1)√c。从abc的取值来看可出1亿道方程以上,与因式分解相符合。一元二次方程运用韦达定律验证:因式分解法因式分解法即利用因式分解求出方程的解的方法。因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题(数学化归思想)。因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边转化为两个一元一次方程的乘积;③令每个因式分别为零④括号中x,它们的解就都是原方程的解。例:,或者∴,.[6]图像解法一元二次方程的根的几何意义是二次函数的图像(为一条抛物线)与x轴交点的X坐标。当时,则该函数与x轴一元二次方程(3)相交(有两个交点);当时,则该函数与x轴相切(有且仅有一个交点);当时则该函数与x轴相离(没有交点)。另外一种解法是把一元二次方程化为:的形式。则方程的根,就是函数和交点的X坐标。通过作图,可以得到一元二次方程根的近似值。计算机法在使用计算机解一元二次方程时,和人手工计算类似,大部分情况下也是根据下面的公式去解可以进行符号运算的程序,比如软件Mathematica,可以给出根的解析表达式,而大部分程序则只会给出数值解(但亦有部分显示平方根及虚数)。5方程解编辑含义(1)一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解。一元二次方程的解也称为一元二次方程的根(只含有一个未知数的方程的解也叫做这个方程的根)。(2)由代数基本定理,一元二次方程有且仅有两个根(重根按重数计算),根的情况由判别式()决定。判别式利用一元二次方程根的判别式()可以判断方程的根的情况。一元二次方程的根与根的判别式有如下关系:①当时,方程有两个不相等的实数根;②当时,方程有两个相等的实数根;③当时,方程无实数根,但有2个共轭复根。上述结论反过来也成立。韦达定理设一元二次方程中,两根x₁、x₂有如下关系:数学推导由一元二次方程求根公式知则有:

1 / 11
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功