第七章三角形测试1三角形的边学习要求1.理解三角形及与三角形有关的概念,掌握它们的文字表述、符号语言表述及图形表述方法.2.掌握三角形三边关系的一个重要性质.(一)课堂学习检测1、填空题:(1)由____________三条线段______所组成的图形叫做三角形.组成三角形的线段叫做______;相邻两边的公共端点叫做______,相邻两边所组成的角叫做______,简称______.(2)如图所示,顶点是A、B、C的三角形,记作______,读作______.其中,顶点A所对的边______还可用______表示;顶点B所对的边______还可用______表示;顶点C所对的边______还可用______表示.(3)由“连接两点的线中,线段最短”这一性质可以得到三角形的三边有这样的性质______________________________.由它还可推出:三角形两边的差____________.(4)对于△ABC,若a≥b,则a+b______c同时a-b______c;又可写成______<c<______.(5)若一个三角形的两边长分别为4cm和5cm,则第三边x的长度的取值范围是____________,其中x可以取的整数值为____________.(二)综合运用诊断2.已知:如图,试回答下列问题:(1)图中有______个三角形,它们分别是______________________________________.(2)以线段AD为公共边的三角形是_________________________________________.(3)线段CE所在的三角形是______,CE边所对的角是________________________.(4)△ABC、△ACD、△ADE这三个三角形的面积之比等于______∶______∶______.3.选择题:(1)下列各组线段能组成一个三角形的是().(A)3cm,3cm,6cm(B)2cm,3cm,6cm(C)5cm,8cm,12cm(D)4cm,7cm,11cm(2)现有两根木条,它们的长分别为50cm,35cm,如果要钉一个三角形木架,那么下列四根木条中应选取().(A)0.85m长的木条(B)0.15m长的木条(C)1m长的木条(D)0.5m长的木条(3)从长度分别为10cm、20cm、30cm、40cm的四根木条中,任取三根可组成三角形的个数是().(A)1个(B)2个(C)3个(D)4个(4)若三角形的两边长分别为3和5,则其周长l的取值范围是().(A)6<l<15(B)6<l<16(C)11<l<13(D)10<l<164.(1)一个等腰三角形的周长为18,若腰长的3倍比底边的2倍多6,求各边长.(2)已知等腰三角形的一边等于8cm,一边等于6cm,求它的周长.(3)一个等腰三角形的周长为30cm,一边长为6cm,求其它两边的长.(4)有两边相等的三角形的周长为12cm,一边与另一边的差是3cm,求三边的长.(三)拓广、探究、思考5.(1)若三角形三条边的长分别是7,10,x,求x的范围.(2)若三边分别为2,x-1,3,求x的范围.(3)若三角形两边长为7和10,求最长边x的范围.(4)等腰三角形腰长为2,求周长l的范围.(5)等腰三角形的腰长是整数,周长是10,求它的各边长.6.已知:如图,△ABC中,AB=AC,D是AB边上一点.(1)通过度量AB、CD、DB的长度,确定AB与)(21DBCD的大小关系.(2)试用你所学的知识来说明这个不等关系是成立的.7.已知:如图,P是△ABC内一点.请想一个办法说明AB+AC>PB+PC.8.如图,D、E是△ABC内的两点,求证:AB+AC>BD+DE+EC.测试2三角形的高、中线与角平分线学习要求1.理解三角形的高、中线和角平分线的概念,学会它们的画法.2.对三角形的稳定性有所认识,知道这个性质有广泛的应用.(一)课堂学习检测1.填空题:(1)从三角形一个顶点向它的对边画______,以______和______为端点的线段叫做三角形这边上的高.如图,若CD是△ABC中AB边上的高,则∠ADC______∠BDC=______,C点到对边AB的距离是______的长.(2)连结三角形的一个顶点和它______的______叫做三角形这边上的中线.如右图,若BE是△ABC中AC边上的中线,则AE______.______21EC(3)三角形一个角的______与这个角的对边相交,以这个角的______和______为端点的线段叫做三角形的角平分线.一个角的平分线与三角形的角平分线的区别是______________________________________________________________________.如图,若AD是△ABC的角平分线,则∠BAD______∠CAD=21______或∠BAC=2______=2______.2.已知:△GEF,分别画出此三角形的高GH,中线EM,角平分线FN.(二)综合运用诊断3.(1)分别画出△ABC的三条高AD、BE、CF.(∠A为锐角)(∠A为直角)(∠A为钝角)(2)这三条高AD、BE、CF所在的直线有怎样的位置关系?4.(1)分别画出△ABC的三条中线AD、BE、CF.(2)这三条中线AD、BE、CF有怎样的位置关系?(3)设中线AD与BE相交于M点,分别量一量线段BM和ME、线段AM和MD的长,从中你能发现什么结论?5.(1)分别画出△ABC的三条角平分线AD、BE、CF.(2)这三条角平分线AD、BE、CF有怎样的位置关系?(3)设△ABC的角平分线BE、CF交于N点,请量一量点N到△ABC三边的距离,从中你能发现什么结论?6.已知:△ABC中,AB=AC,BD是AC边上的中线,如果D点把三角形ABC的周长分为12cm和15cm两部分,求此三角形各边的长.7.(1)如果将一个三角形的三边的长确定,那么这个三角形的形状和大小就不会改变了,三角形的这个性质叫做________________________.(2)四边形是否具有这种性质?(三)拓广、探究、思考8.将一个三角形剖分成若干个面积相等的小三角形,称为该三角形的等积三角形的剖分(以下两问要求各画三个示意图)(1)已知一个任意三角形,并其剖分成3个等积的三角形.(2)已知一个任意三角形,将其剖分成4个等积的三角形.9.不等边△ABC的两条高长度分别为4和12,若第三条高的长也是整数,试求它的长.测试3与三角形有关的角学习要求1.理解三角形的内角、外角的概念.2.掌握三角形的内角和及外角的性质,并能运用这些性质进行简单的推理和计算.(一)课堂学习检测1.填空:(1)三角形的内角和性质是____________________________________________________.(2)三角形的内角和性质是利用平行线的______与______的定义,通过推理得到的.它的推理过程如下:已知:△ABC,求证:∠BAC+∠ABC+∠ACB=______.证明:过A点作______∥______,则∠EAB=______,∠FAC=______.(___________,___________)∵∠EAF是平角,∴∠EAB+______+______=180°.()∴∠ABC+∠BAC+∠ACB=∠EAB+∠______+∠______.()即∠ABC+∠BAC+∠ACB=______.2.填空:(1)三角形的一边与_________________________________________叫做三角形的外角.因此,三角形的任意一个外角与和它相邻的三角形的一个内角互为______.(2)利用“三角形内角和”性质,可以得到三角形的外角性质?如图,∵∠ACD是△ABC的外角,∴∠ACD与∠ACB互为______,即∠ACD=180°-∠ACB.①又∵∠A+∠B+∠ACB=______,∴∠A+∠B=______.②由①、②,得∠ACD=______+______.∴∠ACD>∠A,∠ACD>∠B由上述(2)的说理,可以得到三角形外角的性质如下:三角形的一个外角等于____________________________________________________.三角形的一个外角大于____________________________________________________.3.(1)已知:如图,∠1、∠2、∠3分别是△ABC的外角,求:∠1+∠2+∠3.(2)结论:三角形的外角和等于______.4.已知:如图,BE与CF相交于A点,试确定∠B+∠C与∠E+∠F之间的大小关系,并说明你的理由.5.已知:如图,CE⊥AB于E,AD⊥BC于D,∠A=30°,求∠C的度数.6.依据题设,写出结论,想一想,为什么?已知:如图,△ABC中,∠ACB=90°,则:(1)∠A+∠B=______.即∠A与∠B互为______;(2)若作CD⊥AB于点D,可得∠BCD=∠______,∠ACD=∠______.(二)综合运用诊断7.填空:(1)△ABC中,若∠A+∠C=2∠B,则∠B=______.(2)△ABC中,若∠A∶∠B∶∠C=2∶3∶5,则∠A=______,∠B=______,∠C=______.(3)△ABC中,若∠A∶∠B∶∠C=1∶2∶3,则它们的相应邻补角的比为______.(4)如图,直线a∥b,则∠A=______度.(5)已知:如图,DE⊥AB,∠A=25°,∠D=45°,则∠ACB=______.(6)已知:如图,∠DAC=∠B,∠ADC=115°,则∠BAC=______.(7)已知:如图,△ABC中,∠ABC=∠C=∠BDC,∠A=∠ABD,则∠A=______(8)在△ABC中,若∠B-∠A=15°,∠C-∠B=60°,则∠A=______,∠B=______,∠C=______.8.已知:如图,一轮船在海上往东行驶,在A处测得灯塔C位于北偏东60°,在B处测得灯塔C位于北偏东25°,求∠ACB.9.已知:如图,在△ABC中,AD、AE分别是△ABC的高和角平分线.(1)若∠B=30°,∠C=50°,求∠DAE的度数.(2)试问∠DAE与∠C-∠B有怎样的数量关系?说明理由.(三)拓广、探究、思考10.已知:如图,O是△ABC内一点,且OB、OC分别平分∠ABC、∠ACB.(1)若∠A=46°,求∠BOC;(2)若∠A=n°,求∠BOC;(3)若∠BOC=148°,利用第(2)题的结论求∠A.11.已知:如图,O是△ABC的内角∠ABC和外角∠ACE的平分线的交点.(1)若∠A=46°,求∠BOC;(2)若∠A=n°,用n的代数式表示∠BOC的度数.12.类比第10、11题,若O是△ABC外一点,OB、OC分别平分△ABC的外角∠CBE、∠BCF,若∠A=n°,画出图形并用n的代数表示∠BOC.13.如图,点M是△ABC两个内角平分线的交点,点N是△ABC两个外角平分线的交点,如果∠CMB;∠CNB=3∶2求∠CAB的度数.14.如图,已知线段AD、BC相交于点Q,DM平分∠ADC,BM平分∠ABC,且∠A=27°,∠M=33°,求∠C的度数.测试4多边形及其内角和学习要求1.理解多边形的有关概念,掌握多边形的内角和及其外角和的计算公式.2.理解正多边形的概念.(一)课堂学习检测1.填空:(1)平面内,由____________________________________________________________叫做多边形.组成多边形的线段叫做______.如果一个多边形有n条边,那么这个多边形叫做______.多边形____________叫做它的内角,多边形的边与它的邻边的______组成的角叫做多边形的外角.连结多边形________________的线段叫做多边形的对角线.(2)画出多边形的任何一条边所在直