1.椭圆的定义平面内到两定点F1、F2距离之和为常数2a(①)的点的轨迹叫椭圆.有|PF1|+|PF2|=2a.在定义中,当②时,表示线段F1F2;当③时,不表示任何图形.2a>|F1F2|2a=|F1F2|2a|F1F2|2.椭圆的标准方程(1)=1(a>b>0),其中a2=b2+c2,焦点坐标为④.(2)=1(a>b>0),其中a2=b2+c2,焦点坐标为⑤.2222xyab2222xybaF1(-c,0),F2(c,0)F1(0,-c),F2(0,c)1.动点P到两定点F1(-3,0),F2(3,0)的距离之和等于6,则点P的轨迹是()CA.椭圆B.圆C.线段F1F2D.直线F1F2课堂练习2.椭圆+=1的焦点坐标是,若弦CD过左焦点F1,则△F2CD的周长是.216x29y(±,0)716由已知,半焦距c==,故焦点坐标为(±,0),△F2CD的周长为4a=4×4=16.169773.中心在坐标原点,焦点在y轴上,经过点(,0),离心率为的椭圆方程为.312=12234xyb=3e==a2=b2+c2又椭圆焦点在y轴上,故其方程为=1.a=2b=3.,解得依题设ca122234xy5.双曲线的定义平面内到两定点F1、F2的距离之差的绝对值为常数2a(且①)的点的轨迹叫双曲线,有||MF1|-|MF2||=2a.在定义中,当②时表示两条射线,当③时,不表示任何图形.0<2a<|F1F2|2a=|F1F2|2a|F1F2|6.双曲线的标准方程(1)焦点在x轴上的双曲线:④,其中⑤,焦点坐标为F1(-c,0),F2(c,0);(2)焦点在y轴上的双曲线:⑥,其中c2=a2+b2,焦点坐标为F1(0,-c),F2(0,c).22221xyabc2=a2+b222221xyab6.双曲线=1的实轴长是,焦点坐标是.22169yx8(0,±5)7.方程=1表示双曲线,则实数k的取值范围是.2211xykk(-∞,-1)∪(1,+∞)由题设及双曲线标准方程的特征可得(1+k)·(1-k)0,求得k-1或k1.9.若双曲线=1的两条渐近线互相垂直,则双曲线的离心率.2222xyabe=2由已知,两渐近线方程为y=±x,由两渐近线互相垂直得·(-)=-1,即a=b.从而e===.bababaca22aba210.若双曲线C的焦点和椭圆=1的焦点相同,且过点(3,2),则双曲线C的方程是.22255xy2=122128xy由已知半焦距c2=25-5=20,且焦点在x轴上,设双曲线C的方程为=1,a2+b2=20a2=12=1b2=8,故所求双曲线的方程为=1.2222xyab则,求得2222(32)2ab22128xy8.抛物线的定义平面内与一定点F和一条定直线l(Fl)距离相等的点的轨迹叫做抛物线,点F叫做抛物线的焦点,直线l叫做抛物线的①.2.抛物线的标准方程与几何性质准线标准方程y2=2px(p0)y2=-2px(p0)x2=2py(p0)x2=-2py(p0)图形顶点(0,0)(0,0)(0,0)(0,0)对称轴②.x轴y轴③.焦点F(,0)④.⑤.F(0,-)x轴y轴2pF(-,0)2pF(0,)2p2p离心率e=1e=1e=1e=1准线⑥.x=y=-⑦.x=-2p2p2py=2p11.平面内,动点M到定点F(0,-3)的距离比它到直线y-2=0的距离多1,则动点M的轨迹方程是.x2=-12y依题设,动点M到定点F(0,-3)的距离等于它到定直线y=3的距离,由抛物线的定义可知,其轨迹方程为x2=-12y.12.抛物线y=-x2的焦点坐标是,准线方程是.y=1(0,-1)14抛物线的标准方程是x2=-4y,所以焦点坐标为(0,-1),准线方程为y=1.13.抛物线的顶点在坐标原点,对称轴为x轴,且焦点到准线的距离为4,则该抛物线的标准方程为.y2=±8x依题设,设抛物线的方程为y2=ax,且|a|=2×4=8,即a=±8,故抛物线方程为y2=±8x.14.抛物线y2=4x上一点到其焦点F的距离为5,则点P的坐标是.(4,±4)由抛物线的定义,|PF|等于P点到准线x=-1的距离,则xP-(-1)=5,得xP=4.又y2=4x,得yP=±4.故点P的坐标为(4,±4).15.已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与P到该抛物线准线的距离之和的最小值为.由抛物线的定义,连接点(0,2)和抛物线的焦点F(,0),交抛物线于点P,则点P使所求的距离最小,且其最小值为=.12221(0)(20)217217220.直线y=kx-2与椭圆x2+4y2=80相交于不同的两点P、Q,若PQ的中点的横坐标为2,则弦长|PQ|等于.65y=kx-2x2+4y2=80(1+4k2)x2-16kx-64=0.设P(x1,y1),Q(x2,y2),则x1+x2==2×2,得k=,从而x1+x2=4,x1x2==-32,因此|PQ|=|x1-x2|==6.由于,消去整理得21614kk1226414k21k2212121()4kxxxx5相关点法求轨迹方程例题1:例题2:的轨迹方程。连线的中点),(与上移动,求点在若动点MQPxyP10122的轨迹方程。求)的连线互相垂直,,()和,(到动点PBAP6443小测2.求抛物线截直线所得的弦长。xy12212xy1、直线x-y-m=0与椭圆1有且只有一个公共点,则m的值是()A10BCD292yx1010103、椭圆中过P(1,1)的弦被点P平分,求此弦所在直线的方程。14222yx